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The nonlinear interactions between a fundamental instability mode and both its

harmonics and the changing mean flow are studied using the weakly nonlinear stability

theory of Stuart and Watson, and numerical solutions of coupled nonlinear partial

differential equations. The first part of this work focuses on incompressible cold (or

isothermal; constant temperature throughout) mixing layers, and for these, the first and

second Landau constants are calculated as functions of wavenumber and Reynolds number.

It is found that the dominant contribution to the Landau constants arises from the mean

flow changes and not from the higher harmonics. In order to establish the range of

validity of the weakly nonlinear theory, the weakly nonlinear and numerical solutions are

compared and the limitation of each is discussed. At small amplitudes and at low-to-

moderate Reynolds numbers, the two results compare well in describing the saturation of

the fundamental, the distortion of the mean flow, and the initial stages of vorticity roll-up.

At larger amplitudes, the interaction between the fundamental, second harmonic, and the

mean flow is strongly nonlinear and the numerical solution predicts flow oscillations,

whereas the weakly nonlinear theory yields saturation. Beyond the region of exponential

growth, the instability waves evolve into a periodic array of vortices,

In the second part of this work: the weakly nonlinear theory is extended to heated

(or nonisothermal; mean temperature distribution) subsonic round jets where quadratic and

cubic nonlinear interactions are present, and the Landau constants also depend on jet

temperature ratio, Mach number and azimuthal mode number. Under exponential growth

and nonlinear saturation, it is found that heating and compressibility suppress the growth

of instability waves, that the first azimuthal mode is the dominant instability mode, and



that the weakly nonlinear

axisymmetric shear layer.

15

solution describes the early stages of the roll-up of an

The receptivity of a typical jet flow to pulse type input disturbances is also studied

by solving the initial value problem and then examining the behavior of the long-time

solution. The excitation produces a wave packet which consists of a few oscillations and is

convected downstream by the mean flow. The magnitude of the disturbance in the jet

depends on the location of the excitation and there is an optimum position at which little

energy input will produce large perturbations. It is found that in order to generate the

largest perturbations at any point in the jet, the disturbance should be deposited into the

flow at a point where the phase velocity of the most amplified wave equals the fluid

:velocity (of the base flow).
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INTRODUCTION

1.1 Historical Background

Mixing layers, wakes and jets belong to a class of flows characterized by

inflectional profiles in the mean streamwise velocity. These flows are inviscidly unstable;

when excited by an oscillatory disturbance of suitable frequency (or wavenumber), the

amplitude of the disturbance in the fluid increases exponentially with downstream distance

(or time) according to linear stability theory (Drazin and Reid, 1981; Betchov and

Criminale, 1967). The disturbance extracts energy from the mean flow, while at the same

time it is convected with it. The instability mechanism is a Kelvin-Helmholtz type with

viscosity being slightly stabilizing.

The exponential growth of the disturbance restricts the domain of validity of linear

theory to short distances and times. Further downstream, the growth rate of the instability

wave generally decreases and a "nonlinear region" appears, in which higher harmonics are

present and the growth of the fundamental deviates from the exponential behavior. In this

region, the "self-interactions" of the finite-amplitude disturbance become important and

generate a wave Reynolds stress, which has an appreciable effect on the mean flow. This

distortion of the mean flow modifies the rate of energy transfer from the mean flow to the

disturbance and, since this energy transfer is the cause of the growth of the disturbance,

there is a modification of the growth rate of the latter.

It is now generally accepted that large scale coherent structures, in addition to fine-

scale chaotic motions, exist within turbulent free shear flows. Evidence of the wave-like

coherent structures in fully turbulent subsonic (unheated) round jets is convincingly
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displayed in the Schlieren photographs by Ahuja, Lepicovsky, Tam, Morris and Burrin

(1982). These large-scale structures, whose dimension is on the order of the shear layer

thickness, play an important role in controlling the dynamics of turbulent flows. The

sequential mergings of these coherent structures in the downstream direction is a possible

mechanism for the mixing and spreading of a shear layer (Winant and Browand, 1974).

Ffowcs Williams and Kempton (1978) found that a large part of jet noise is a direct

consequence of the large-scale structures, while the fine-scale chaotic turbulence plays a

relatively minor role. On the other hand, Ahuja et al. (1982) argued that, although the

large-scale structures are responsible for producing considerable changes in the fine-scale

turbulence, the actual noise generation mechanism is a result of the latter. Irrespective of

the mechanism through which this noise is produced, the large-scale structure plays an

important role in the dynamics of turbulent shear flows.

Miksad (1972) has reviewed the results of many experiments on the instability of

free shear layers, and also reported on his own work. He classified the instability into six

successive flow regions: (1) the instability is initiated in a region close to the origin of the

shear layer. A disturbance of small amplitude has exponential growth rate; the speed and

wavelength are well predicted by the linear theory of spatially growing modes in an

inviscid fluid, (2) in a region downstream, further exponential growth leads to nonlinearity,

and to the generation of subharmonics as well as harmonics, (3)the fundamental,

harmonics and subharmonics then equilibrate in unison, (4) a second region of subharmonic

generation follows next, in accord with the theory of Kelly (1967). The fundamental

remains little changed, but the harmonics begin to decay, (5)three-dimensional distortion

of the fundamental begins, and (6) finally there is a region of breakdown into turbulence.
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There is now considerable experimental evidence that the large-scale structures, and

hence, the global features of turbulent flows can be organized by artificial excitations such

as oscillating flaps, vibrating ribbons and acoustic devices (Wygnanski and Petersen, 1987).

Ahuja et al. 0982) presented a series of measurements for subsonic jets excited at

different frequencies. They have concluded that higher Mach number heated jets require

higher excitation levels to produce noticeable changes in both large-scale structures and

small-scale turbulence intensities. Control of flows by intentional excitation of natural

flow instabilities involves new and largely unexplored phenomena and offers considerable

potential for improving component performance in areas where mixing is important, such

as combustors, rocket engines, internal mixers and ejectors. Petersen and Samet (1988)

have shown that the mean velocity profile and the spreading rate of a turbulent

axisymmetric cold low speed jet can be altered by introducing a controlled acoustic

excitation. Stone and McKinzie 0984) concluded that deliberate acoustic excitation of

coherent structures offers a promising new means of controlling turbulent shear flows.

They have also emphasized the fact that, to date, most research work has been centered

around unheated jet flows, usually at low speed. Therefore, future research work should

be directed towards the understanding and control of coherent structures in heated high

speed jets.

A jet is unstable to axisymmetric and azimuthal modes. Michalke and Hermann

(1982) calculated the spatial growth rates of axisymmetric and (first) azimuthal disturbances

and found that at low frequencies the first azimuthal mode is more unstable than the

axisymmetric one. They also found that the phase velocity of the first azimuthal

disturbance (/_=l) is always smaller than the axisymmetric one (8=0). The phase velocity

measured in jet turbulence, excited artificially by a loudspeaker (Chan, 1974), showed the
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dominanceof the axisymmetricdisturbance.Thus,a jet forcedby a loudspeakerin the

plenumchamberis presumablydominatedby axisymmetricmodes.On theotherhand,for

an unexcitedjet, the measuredphasevelocity follows moreclosely that of the first

azimuthaldisturbanceat low frequencies,ascanbeseenfrom Ko andDavies(1975). The

basicdynamicaldifferencebetweenaxisymmetricandazimuthalmodesis the presenceof

vortex-stretchingin the latter.

In the study by Crow and Champagne(1971),a disturbancewith a certain

frequencyand amplitudewas introducedinto the jet and the developmentof the

disturbancewas thenfolloweddownstream.By measuringthevelocityfluctuationsalong

the centerlineof the jet, they found a distinct wave system,the wavelengthbeing

dependenton the forcing frequencyand the jet velocity. The amplitudeof the wave

reacheda peak and then graduallydecayeddownstream. The observedwave-like

structuresattainedtheir greatestamplificationat a Strouhalnumber(St;basedon the jet

diameter)of 0.3; wavesof higherfrequenciespeaked(in the amplitudeof the velocity

fluctuations)closerto the nozzleexit but thoseof lower frequenciespersistedfurther

downstream.Excitationmodifiedthemeanflow alongthecenterlineof the jet. Crowand

Champagne also introduced the concept of a "preferred mode" of jet instability to denote

that wave-like structure which attains the largest peak amplitude as the excitation Strouhal

number is varied; the preferred mode was found to occur around St -- 0.3.

The preferred mode of instability was investigated in an axisymmetric air jet of

moderate Reynolds number by Petersen and Samet (1988). They examined the spatial

evolution of the preferred mode by exciting the flow acoustically and then mapping the

phase-locked velocity fluctuations. They found that throughout the potential core region,

the phase-locked profiles agreed with the eigensolutions of the Orr-Sommerfeld stability

equations provided the calculations were based on the measured, mean velocity profiles.
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The excitation intensity was varied from low levels where the flow was merely tagged, to

high levels where the mean flow was substantially distorted, and over that range of

excitation there was no apparent deterioration in the agreement with stability predictions.

The effects of excitation are clearly shown in the excellent Schlieren photographs of

Ahuja et al. (1982) in which concentrated vortex rings have formed in the shear layer

downstream of the nozzle exit. By measuring the centerline variation of instability-wave

pressure amplitude at various excitation levels as a function of axial distance, they found

that the centerline mean velocity decays faster with downstream distance at lower Mach

numbers when the jet is unheated (than at higher Mach numbers when the jet is heated).

They also found that increasing the excitation level causes the jet to spread more rapidly;

at a fixed downstream location, the mean velocity at the centerline decreased when the

excitation level was increased. This work of Ahuja et al. was also extended to supersonic

speeds (Lepicovsky et al., 1988). These investigators found that the threshhold of

excitation level increases with increasing jet temperature (i.e., the sensitivity of heated jets

to upstream acoustic excitation strongly varies with the jet operating conditions) and that

no vortex pairings could be discerned from the Schlieren photographs (at high speeds; for

an earlier report on this work, see Ahuja, Lepicovsky, and Brown, 1986).

The roll-up of the vorticity in a free shear layer is definitely a nonlinear

phenomenon. In order to describe the early stages of this phenomenon and to provide

some understanding of how it is affected by the various parameters in our problem (i.e.,

Mach number, heating, etc.), we use the weakly nonlinear theory of Stuart (1960) and

Watson (1960).

This theory is extended to compressible and heated jets. We use a "temporal theory"

in order to deal with a well-posed problem, although our results may not be as applicable
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as those of a "spatial theory" to actual laboratory experiments. For a certain range of

parameters, the issue here centers around the concepts of convective and absolute insta=

bilities; an issue that was not resolved (for jets) until the work of Sohn (1986) (see also

Monkewitz and Sohn, 1986, 1988). Sohn found that when the heating of the jet exceeds a

certain amount, the axisymmetric and first azimuthal modes become absolutely unstable at

some axial location. For an absolutely unstable flow, spatial theory is meaningless.

Finally, Sohn speculated that whenever a jet is absolutely unstable, it is likely to be les__=ss

sensitive to external excitation, and therefore, no longer controllable by low level forcing.

The Stuart=Watson approach has been applied to shear layers with the hyperbolic

tangent velocity profile. Schade (1964) calculated the value of the first Landau constant at

exactly the neutral point at infinite Reynolds number. He neglected the effect of the

mean flow distortion (as we shall see from this study, this is the most important effect)

and found that the first Landau constant is negative. This suggests that, at large

amplitudes, the fundamental will saturate into an equilibrium amplitude. Maslowe (197"/)

carried this analysis further by establishing the dependence of the first Landau constant on

the Reynolds number.

This was essentially the status of affairs at the beginning of the present study.

Actually, the picture was even further confused by the work of Huerre (1980) in which a

rather elaborate asymptotic analysis was carried out to study the effect of the mean flow

distortion (which was neglected by Schade and Maslowe) on the nonlinear stability of a

mixing layer. He found, through an incorrect analysis, that the mean flow distortion was

destabilizing. This finding has since been revised by Huerre (1987).

In the work of Stuart and Watson, as well as in the references just cited, the weakly

nonlinear stability theory was applied to the neutral waves. In an interesting paper,
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Herbert (1983) has introduced an idea which removed this restriction; Herbert has shown

how all the Landau constants may be defined systematically at all wavenumbers by a

suitable "normalization n of the amplitude. All definitions of the Landau constants agree at

the neutral wavenumber so that Herbert's work is consistent with the classical works on

this subject.

The hydrodynamic instability of shear flows has been the subject of numerical

investigation as well. Zabusky and Deem (1971) analyzed the nonlinear evolution of an

unstable two-dimensional wake. They found that even in the nonlinear stage the distur-

bance amplitude does not reach a steady state, but instead exhibits a low frequency

nonlinear oscillation. By examining the evolution of each Fourier component of the

disturbance, they concluded that the interaction between the mean flow and the most

unstable mode of the disturbance is responsible for the observed amplitude oscillation.

Miura and Sato (1978) studied the nonlinear development of the most unstable mode for a

bounded shear layer. By considering only the fundamental mode and a mean flow correc-

tion, and disregarding higher harmonics, they found that the amplitude oscillation is due to

a temporal variation of the mean velocity profile.

In the classical, normal-mode, analysis of shear flows, nothing is said about the

amplitude of the growing mode in relation to the input disturbance. Such a relationship is

called the receptivity of the flow. Receptivity analysis gives the response of the flow to an

impulsive or periodic-type source by solving the initial value problem. The long-time

asymptotic solution to a pulse is a wave packet (Gaster, 1975), which may be defined as an

amplitude modulated wavetrain of finite extent or as a group of waves of different

amplitudes and wavenumbers. The long-time asymptotic solution to a periodic excitation



23

is a spatial instability mode whose characteristics (i.e., amplitude) depend on the location of

the source.

The response of the flow to a pulse gives us information on the absolute/convective

instabilities of the flow. A study along these lines was carried out by Huerre and

Monkewitz (1985) for free shear flows with the tanh family of basic velocity profiles. By

studying the branch point singularities of the complex dispersion relation, they found that

spatial instability modes cannot evolve when there is a significant amount of reverse flow.

In this case, the instability is termed absolute. On the other hand, when the external

streams are co-flowing, the instability is convective, and the large (x,t) behavior of the

solution is identical with that of the spatial instability mode at the excitation frequency.

Balsa (1988) studied the receptivity of a typical free shear layer to pulse-type and periodic

excitation. By solving the initial value problem completely, and studying its long-time

behavior, Balsa found that the shear layer is very receptive to high-frequency disturbances

that are generated near the centerline of the layer. While the work of Gaster (1965, 1975)

and Huerre and Monkewitz (1985) describes the general structure of wave packets and

spatial instability modes without explicitly addressing the receptivity issue or solving the

initial value problem, the work of Balsa (1988) was mainly concerned with establishing the

explicit connection between the perturbations in the flow and the external disturbances

which generate them. This connection, which can be derived only by solving the initial

value problem, contains what might be termed the _receptivity _ of the flow.

Understanding the physics of large-scale structures or instability waves in free shear

flows is important in engineering. Experimental evidence indicates that artificial excitation

alters the mixing process. Arbey and Ffowcs Williams (1984) conducted experiments on a

circular jet simultaneously excited by two different acoustic tones. By varying the phase
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between two signals at harmonically related frequencies, they found that control can be

exercised on the process of harmonic generation. The efficiency of many engineering

devices which rely on fluid mixing such as combustors, diffusers and turbine blades can be

improved by controlling the mixing process. In jets there is a close link between the flow

characteristics and the noise radiated to the far-field. Based on classical aeroacoustics, an

excited jet with significantly modified mean flow and large scale structures will generate

different noise levels compared with those of an unexcited jet.

Techniques have long been sought for the controlled modification of various flow

fields, such as jets, wakes, boundary layers, and separated flows. Recent published results

of laboratory experiments (Brown and Roshko, 1974) have established that coherent

structures exist even within apparently chaotic turbulent flow fields. Even more recent

published results (Stone and McKinzie, 1984; Ahuja, et al., 1982) show that deliberate

excitation of these coherent structures has a significant effect on the mixing characteristics

of shear layers. Control of flows by intentional excitation of natural flow instabilities

involves new and largely unexplored (especially in the presence of heating and Mach

number effects) phenomena and offers considerable potential for improving component

performance. Ejector performance can be improved by enhanced mixing leading to size

and weight savings. Internal mixer nozzles are used to increase thrust, improve fuel

economy, and reduce noise for turbofan engines. Enhanced mixing due to excitation has

the potential to achieve better mixing with simpler (lower cost) mixer designs or to reduce

mixing length to allow a shorter cowl, resulting in weight savings. Enhanced mixing may

be applied to combustors to improve fuel/air mixing, leading to shorter combustors along

with the possibility of improved pollution control; and to improve mixing of products and

coolant to lower peak metal temperature. Excitation can provide the means to control
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separationto improve the performance of wings, flaps, turbomachinery blades and

diffusers. Stall due to flow separation is a concern for flow over airfoils and rotating

machinery blades because it can lead to catastrophic failures. Increased mixing and

spreading rates may be useful in reducing ground effects for vertical and short takeoff and

landing aircraft. Since the exhaust is directed toward the ground, enhanced mixing might

reduce ground heating and erosion. High-frequency excitation may also prove useful in

preventing exhaust impingement on the fuselage. Finally, mechanical and aeroacoustic

excitation may permit more efficient propulsion systems.

1.2 Scope of the Present Investigation

The main goals of the present investigation are: (1)to understand the nonlinear

evolution of disturbances in mixing layers and in heated subsonic jets. The fundamental

disturbance grows exponentially until forced to make some adjustment due to the com-

bined effects of higher harmonics and mean flow changes. These nonlinear adjustments

depend on the disturbance axial and azimuthal wavenumbers, on the mean velocity and

temperature profiles, and on the Reynolds number, the Mach number and the jet

temperature ratio; (2)to clarify certain issues related to the weakly nonlinear stability

theory of Stuart and Watson. In particular, the relative contribution to the first Landau

constant arising from the second harmonic and from the mean flow distortion; the

dependence of the first Landau constant on the disturbance wavenumber; and the

applicability of the theory to heated compressible jets; and (3)to study the receptivity

problem in order to find out how to excite the flow in such a way as to produce large

perturbations everywhere in the jet. For a typical jet flow, there is an optimum position

to place a disturbance in such a way as to produce maximum perturbation velocities.
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Instability waves in a base flow will be convected downstream by the flow, while at

the same time they will grow in amplitude. In the course of time, a finite amplitude

disturbance will evolve as the balance between the unsteady linear, nonlinear and viscous

terms in the governing equations changes. Soon after the disturbance is introduced into the

flow, self-interactions generate higher harmonics and a wave Reynolds stress, which will

distort the mean flow and alter its stability characteristics. One objective of this

investigation is to clarify the effect of the mean flow distortion on the growth of the

nonlinear disturbance.

The Landau constants, which measure the importance of nonlinearity, are obtained

for neutral and amplified waves in order to establish the range of validity of the weakly

nonlinear theory and to see how the importance of the nonlinearity changes as the neutral

wave is approached. The relative contributions of the harmonics and the mean flow

distortion to the Landau constants are investigated.

In addition, the weakly nonlinear theory is extended to heated (i.e., nonisothermal)

and compressible (i.e., with nonzero Mach number) jets which are subject to axisymmetric

or azimuthal forcing. Cubic nonlinearities, which arise due to heating and are absent in

incompressible flows, have significant effects on the Landau constants.

The weakly nonlinear theory is an asymptotic theory valid for (small) finite ampli-

tudes. But available experimental data indicate that the amplitude of the perturbations can

reach as much as 10 to 20% of the characteristic mean quantities. Furthermore, the weakly

nonlinear theory cannot predict any nonlinear oscillations observed in experiments beyond

the initial saturation of the fundamental wave. The numerical calculations of Miura and

Sato (1978) for the inviscid bounded shear layer, which are based on the fundamental and

the mean flow distortion component, show flow oscillations due to an energy exchange
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betweenthe mean flow and the fundamental. Therefore, in order to understand the

behavior of strongly nonlinear waves and to test the applicability of the weakly nonlinear

theory when nonlinearity is moderate, a numerical study is presented for the shear layer.

The disturbance streamfunction is expanded in a Fourier series in the axial variable which,

on substitution into the Navier-Stokes equations, leads to a system of coupled nonlinear

partial differential equations in the coefficient functions. In this work, only the

fundamental wave, the second harmonic and the mean flow distortion are present; these

equations are solved numerically.

Finally, the receptivity of an ideal jet to a pulse type disturbance is studied by

solving the initial value problem completely, and then studying the behavior of the long

time solution. This solution depends on the strength and the location of the disturbance.

The most receptive place is obtained by varying the location of the source along the radial

direction and examining the magnitude of the subsequent perturbations.

In summary, the sensitivity of the flow to excitation is established via receptivity

analysis and the way nonlinearity sets in is established via a combination of the weakly

nonlinear theory and numerical solutions of nonlinear partial differential equations

governing the fundamental, mean flow distortion and second harmonic modes. The

applicability of the weakly nonlinear theory in describing the evolution of amplified

disturbances is established by making a comparison with the numerical calculations. The

weakly nonlinear theory of Stuart and Watson is extended to heated subsonic jets and the

behavior of the first Landau constant is studied as a function of wavenumbers, Reynolds

number, Mach number and temperature ratio.
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CHAPTER2

NONLINEAR ANALYSIS

2.1 The Compressible Heated Jet

The main purposes of this section are to provide the basic equations which will be

used in the weakly nonlinear theory of a nonisothermal (heated and/or subsonic) jet and to

discuss the validity of the simplifying assumptions. We begin with the equations of motion

(Bird, Stewart and Lightfoot, 1960; the equations of state and continuity of an ideal gas

with constant specific heats are used to reduce the energy equation (10.1-19(I) on

page 322) of this reference into the form below, after neglecting viscous dissipation):

Continuity: Op + V.(pv) = 0 (2.1-1)
Ot

0 V-(pvv) -Vp + V.r (2.1-2)Momentum: _- (pv) + -~ =

Energy: Op + v.Vp + _;pV.v = (I-i¢) V.Q (2.1-3)

where p, v, p, r and Q denote the fluid density, velocity, pressure, shear stress (tensor) and

heat flux, respectively, and _ = const stands for the ratio of the specific heat capacities

(Cp/Cv).

In the momentum equation, Eq. (2.1-2), we have neglected the effects of gravity

because of the dominance of forced convection. Our primary interest in this study focuses

on the "shear flow instability" of a gas jet in which convection dominates so that gravity

and buoyance (the Richardson number is small) effects may be neglected. Buoyancy

effects can be eliminated almost completely by orienting the jet column vertically,
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if needed.The energy equation, Eq. (2.1-3), is valid for an ideal gas with constant specific

heats, under the assumption that viscous dissipation is negligible. In addition to the above

equations, we also have the familiar equation of state for an ideal gas as well as the usual

constitutive relations, which express the shear stress in terms of the velocity gradients.

Our physical variables are decomposed into two parts; one corresponding to the base

(also called the mean) flow (i.e., U for velocity, P for pressure, R for density, etc.) and the

other corresponding to the disturbances (i.e., u, p, p, etc.). We shall also assume that
N

viscous and heat conduction effects are "unimportant" (the Reynolds number and hence the

Peclet number Pe = RePr is assumed to be large, where Pr = O(1); we are interested in the

"shear flow instability" in which convection dominates over viscous and conduction effects;

free shear flows are especially unstable when they are nondissipative; actually, we shall

neglect heat conduction altogether but retain viscous diffusion in order to treat neutral

waves) so that the base flow may be considered (at least locally) parallel. This implies that

U--- U(y,z) i, P ,-, const, R __-R(y,z) where x = (x,y,z) is a Cartesian coordinate system, in

which x points along the axis of the jet (y and z are transverse coordinates) and i is the

corresponding unit vector. When we get to the details of the analysis, the transverse

coordinates will be replaced by polar coordinates (r,0), but first it is convenient to write

down the disturbance equations in vectorial form.

into Eqs. (2.1-1) through (2.1-3), we arrive at

0p + V.(Ru + pU) = -V.pu
at ~ - -

After substituting our decomposition

(2.1-4)

(Ru + pU) + V.(RUu + RuU + pUL_ + Vp

1 V2 u = O
Re - -b-i-(PU)

- V-(Ruu + pUu + puU + puu) (2.1-5)
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°_P+ U.Vp + mPV.u = -u.Vp - K.pV.u (2.1-6)

The significance of the locally parallel approximation, within the context of shear

flow instability, is well understood and will not be discussed further. On the other hand,

in deriving Eqs. (2.1-4) through (2.t-6), we have made some additional assumptions that

need further clarification. First, the equations are written in a nondimensional form in

which distances have been normalized by the jet radius, velocities by U c (where the sub-

script c denotes the value of the quantity on the jet centerline), density by R c, pressures

by R e U c and time by the characteristic transit time (jet radius)/U c. As a result of this

nondimensionalization, viscosity in Eq. (2.1-5) is replaced by an inverse Reynolds number,

Re = (jet radius) U c Pc/#crit "" const, where #crit is the viscosity of the fluid in the so-

called critical layer. We next explain how this replacement comes about.

One of the main objectives of this research is to study the nonlinear evolution of an

instability mode in a subsonic heated jet at high Reynolds number. As is well-known,

these instabilities are inviscid (they arise from the inflectional character of the base

velocity profile), and for all practical purposes, the viscous term in Eq. (2.1-5) is

unimportant, except for a neutral (or a very near-neutral) wave, and even for this wave

the effects of viscosity are important only in a thin layer in the jet whose (nondimensional)

thickness is on the order of Re-l/3. This thin layer, centered on the inflection point, is

called the critical layer. The key observation is that within this thin layer, the viscosity is

a constant to a good degree of approximation, so that #- #crit. To be sure, outside the

critical layer, we have the incorrect value of the viscosity, but because of the inviscid

character of the instability, this is immaterial as long as the Reynolds number is large.

Furthermore, because of the very small thickness of the critical layer, derivatives

normal to this layer are very much larger than those tangential to the layer, and the
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component of the velocity tangential to the layer is much larger than those normal (these

remarks are very reminiscent of the classical boundary layer approximation). Thus, the

shear force in the critical layer is given by #crit V_ u, where Vt is the gradient operator

in the transverse, (y,z), space. In Eq. (2.1-5), we replace V t by V (i.e., we keep an

unimportant term) in order to simply effect comparisons between published results (for

constant property flows) and our results in this special case. This approximation for the

shear stress, together with scaling arguments, is also discussed by Shen (1964, p. 761).

In this study, we set the thermal conductivity to zero in the disturbance energy

equation, Eq. (2.1-6). This approximation brings about considerable simplification in the

weakly nonlinear theory, as well as in the numerical solution of the relevant equations,

because the entire disturbance problem can be formulated in terms of p, u and p, without

any reference to the temperature field. The main limitation of this assumption is that we

cannot accurately compute the density (or temperature) field associated with a neutral

instability wave. In a separate study (Ng, 1989), this limitation is studied more carefully

and quantitatively. Our assumption of neglecting thermal conductivity is summarized

rather succinctly by Lees and Lin (1946): "The influence of the conductivity on the viscous

solutions of the velocity components is only secondary for Reynolds numbers of the order

of magnitude of those encountered in most aerodynamic problems."

In the analysis, a cylindrical coordinate system (x, r, 8) with velocity components(u,

v, w) is used and the mean profiles are given in Appendix A. The chosen base velocity

profile agrees reasonably well with both experimental data and the similarity solution. The

mean density profile is an approximate solution of the Navier-Stokes equations when the

Reynolds number is large and the Prandtl number is unity. The latter profile is obtained

(Schlichting, 1979, pp. 330) by solving the boundary layer-ty_ momentum and energy
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equations after assuming that the temperature T depends solely on the velocity component

U and that the viscosity and the thermal conductivity are constants. The resulting density

distribution depends on the jet temperature ratio, T* = Tc/Too; the jet Mach number, M,

and the ratio of the specific heats, _ (see Appendix A). The ambient temperature is

denoted by Too (in appropriate units). The numerical calculations will be carried out for

these base flow profiles although the general theory is valid for arbitrary profiles. Typical

velocity and temperature profiles are shown in Figure 1.

In linear stability theory, the right-hand sides of (2.1-4), (2.1-5), and (2.1-6) are

ignored because they are (at least) quadratically small in the perturbations, and a modal

solution is studied in the form

v(x,r,O,t) = A o eaot Vxo(r) e i(ax+po-w°t) + c.c. A o = const (2.1-7a)

with some arbitrary normalization, say vlo(r o) = 1; ro is the location of the inflection point

in the mean velocity profile and c.c. denotes the complex conjugate. We may think of A o

exp(aot ) as the amplitude of this mode. The complex growth rate is )'o = ao - kvo; °:o is the

(real) frequency, the axial and azimuthal wavenumbers, a, /_ are real, and vlo(r) is the

radial distribution of the mode. Similar forms hold for u, w, p and p, although only one

of these quantities may be normalized.

We shall also refer to the complex growth rate ,Xo as the (linear) eigenvalue,

although in classical (linear) stability theory it would be more conventional to call i,Xo/a the

eigenvalue (which is usually denoted by c). The objective of linear stability theory is the

determination of the complex mode shape, Vlo, and the corresponding eigenvalue Ao" In

general (subsonic flows), Vlo vanishes at r = 00 and is finite on the jet axis, r = O. The

objectives of nonlinear stability theory are quite similar, more specifically we wish to find
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T* = 1.0 7

I

0 1 0 1
U(r) T(r)

Figure 1. General mean velocity and temperature profiles. The mean temperature
distribution depends on jet temperature ratm (T =Tc/Too) and Mach

• • • • •

number (M). The dashed hne Is that of a cold (T = 1) incompressible
(M = 0) jet.
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rate and frequency,and the mode shapeare altered by finite

Thereareseveraltypesof nonlinearstabilitytheory,usuallycharacterizedby the

phrases"viscouscritical layer,""nonlinearcritical layer"(or somecombinationof them),

"equilibrium"and "non-equilibriumcritical layers." Examplesof thesemay be found in

(Stuart,1960;BenneyandBergeron,1969;and Stewartson, 1978). The present work is a

direct extension of Stuart's seminal work to subsonic and heated jets, and may be

characterized as a "viscous and equilibrium critical layer theory." It is essentially the

temporal theory in which the flow is spatially periodic in the streamwise direction.

When the nonlinear terms are taken into account, the disturbance interacts with

itself in addition to the mean flow. These interactions result in the generation of

harmonics, a mean-flow distortion and a distortion of the fundamental. Moreover, the

amplification rate (ao) and frequency (o_o) of the disturbance will change with amplitude

due to nonlinear effects. Therefore, we expand the disturbance in its Fourier series

oo

u(x,t) -- _ Un(r,t)
ein_ (2.1-7b)

n=-o¢

where the phase _ is_ = ax + flO- -/(t),n isthe orderof the harmonic,and -_(t)isreal.

After comparing Eq. (2.1-7b) for n = 1 with Eq. (2.1-7a), we see that d-y/dt is essentially a

frequency. The disturbance is taken to be periodic in x and 0 but its time dependence is

still arbitrary since u n also is allowed to depend on time. By using the series (2.1-7b), we

restrict the class of solutions to those that are periodic in x and 0 with wavenumbers a

and 8. The series (2.1-7b) contains all the harmonics but only the first few will be

calculated, namely, the fundamental (n - 1), the second harmonic (n = 2), the mean flow
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Similar equations hold for p and p. For

U_n(r,t ) = u_(r,t) (2.1-8)

must be satisfied where * denotes the complex conjugate.

Attention is focused on finite but sufficiently small disturbance amplitudes, which

may be reached at some finite time; therefore, each of the harmonics Un(r,t) is expanded

in a "Taylor series" of the real amplitude A = A(t) of the fundamental mode (n = 1). We

write

with

O0

Un(r,t ) = An(t) _ Unm(r ) A2m(t) ; n >__0 (2.1-9)

m=O

Uoo= Poo= Poo= 0 (2.1-10)

The validity of Eq. (2.1-9) may be seen heuristically as follows. Consider the n = 2

term (the second harmonic) as an example; when the amplitudes are very small, this second

harmonic is generated by the square of the fundamental, therefore, its dominant amplitude

should scale as AA = A 2 (or more generally as An). This is the leading coefficient on the

right-hand side of Eq. (2.1-9). However, a second harmonic can also be generated by a

quadratic interaction between the third harmonic (whose leading amplitude scales a as A 3)

and the fundamental; the result is that this latter interaction should scale as ASA = A 4.

This type of an interaction is represented by the second term of the infinite sum (i.e.,

n = 2, m = 1) in Eq. (2.1-9). Clearly, there is an infinite set of interactions that will regen-

erate the second harmonic, and this observation explains the presence of the infinite sum.
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Note that for n < 0, we use (Eq. (2.1-8); we cannot have negative values of n in F-z1.

(2.1-9). In order to ensure that the disturbance is always small, we require Eq. (2.1-10).

Otherwise, the fundamental disturbance would begin with u o = uoo(r)+ "- which has

already been accounted for as the base flow. Finally, note that for compressible flows, we

also have cubic interactions [e.g., puu in the momentum equation, Eq. (2.1-5)] in addition

to the more familiar quadratic interactions which also occur in constant density flows. It is

consistent with the above expansions Eqs. (2.1-7b) and (2.1-9) to seek an amplitude

equation of the form (Stuart, 1960; Watson, 1960; Herbert, 1983)

where

OO

1 dA i _d_2.. _-" )_m A2m (2.1- I 1)
A dt dt Z.__,

m--0

Am = am - i_ m =, complex Landau constants, m > 1

Indeed, the seminal contribution of Stuart and Watson lies in the demonstration that

Eqs. (2.1-7b), (2.1-9) and (2.1-11) will solve the incompressible Navier-Stokes equations

exactly, provided that the Landau constants, _a, "_2, "", are chosen in a certain way (we

shall come back to this issue momentarily). Recall that "_o is the linear eigenvalue. It is,

of course, important to recognize that this solution is a formal solution (essentially a Taylor

series in the amplitude) whose radius of convergence is unknown. There is some evidence

(Sen and Venkateswarlu, 1983) for plane Poiseuille flow, which suggests that this radius of

convergence is nonzero; the present study also suggests that this is indeed the case when

the Reynolds number is low to moderate (see Chapter 5). We will truncate the right-hand

side of Eq. (2.1-11) after the quadratic term and use this nonlinear amplitude equation to

study the evolution of small amplitude (but nonlinear) disturbances.
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Apart from the convergence issue, which was very briefly alluded to previously, the

success of amplitude equation, Eq. (2.1-11), depends on the rational and systematic deter-

ruination of the Landau constants. In the classical theories, where the linear mode - whose

nonlinear characteristics are sought - is exactly neutral, the so-called solvability condition

(or Fredholm alternative) allows such a determination (Stuart, 1960). Herbert (1983)

suggested an alternative approach to the definition of the Landau constants. This latter

approach may be applied to unstable linear modes as well, and appears to be easier to

enforce than the classical solvability condition. In the present work, we shall follow

Herbert's ideas because we are very much interested in the calculation of the Landau

constants of (slightly) unstable waves, and their attendant variation with wavenumbers a, p.

Indeed, we find that the Landau constants vary extremely rapidly with the wavenumbers.

This is a completely new result that was not anticipated at all at the beginning of this

research.

The key idea of Herbert is that the amplitude A = A(t) must be that of the

fundamental (n = 1) mode at an arbitrary point (say, r = ro), that is, vl(ro,t) -- A(t). In

view of Eq. (2.1-9), the last remark implies

or

oo

m--0

Vlm(r ) A2m z 1 at r = ro (2.1-12a)

Vxo(ro) = 1

vla(r o) -- vxz(r o) ..... 0 (2.1-12b)

Equations (2.1-12b) serve as the normalization conditions for the linear and the nonlinear

contributions to the fundamental.
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It can be shown that Herbert's and the classical definitions of the Landau constants

are identical when the linear mode is precisely neutral (Herbert, 1983). It should also be

noted that different choices for ro (we usually set ro to the position of the inflection point

of the base velocity profile) imply different normalizations, hence different amplitudes.

Finally, we choose to normalize the cross-section component v because in this way our

results are easily compared with published (incompressible) results that usually employ a

streamfunction.

After substituting Eqs. (2.1-7b), (2.1-9) and (2.1-11) into the governing equations,

Eqs. (2.1-4), (2.1-5), and (2.1-6), and collecting terms, the following ordinary differential

equations are obtained for the mode shapes Unm(r), Pnm(r) and Pnm(r)

(1) (2.1-13)aPnm + RV'unm + R'vnm = Fnm - nmA1 Pxo

[ ']RA- _V z Unrn+RU'vnm+inapnm

,-.(2) nm,XlRul °= rnm - (2.1-14)

E" l-1 2_ +Pnm + 1 2inB3.- _ Vnm Re r2 Wnm

= F(3)nm- nmAiRVlo (2.1-15)

A- _-_ V 2- Wnm+ _r Pnm"

= F(n_4) _ nm_oRwlo

rz Vnm

(2.1-16)



where

39

(2.1-17)

A(r) = 2ma o + in_U-c o)

• 1 inB
V'unm~ = inc_Unm+Vnm+ r Vnm + r Wnm

V" d---_-2 1 d [w_ _-_1" dr2 + - -- - n_ +r dr r2

Ao = -iac o = ao - io_o -- linear eigenvalue

where the prime represents differentiation with respect to r and n = 0,1,2,3, m = 0,1.

Recall that R = R(r) and U = U(r) denote the (nondimensional) density and velocity

profiles of the base flow respectively, and Re and M are the characteristic Reynolds and

Mach numbers of the flow (see Appendix A). The nonlinear interactions are contained in

l_(J)the terms -nm, J = 1,...,5. They vanish for the linear mode, and every nonlinear mode is

forced by modes of lower order in the amplitude. They are given in detail in Appendix B.

The following first few modes are of interest: the O(A) linear mode n = 1 and m = 0; the

second harmonic mode n = 2 and m = 0; the third harmonic mode n = 3 and m = 0; the

mean flow distortion mode n = 0 and m = 1; and the distortion of the fundamental mode

n= ! and m= 1. The mode n=0 and m=0 is set to zero per (2.1-10). The first

Landau constant is denoted by )'1.

Our governing equations, Eqs. (2.1-13) to (2.1-17), are solved numerically using

finite difference methods. For n = 1, m = 0, the relevant equations contain the unknown

eigenvalue )_o. The only other set of equations which poses some difficulty arises from

n = m = 1 and contains the first Landau constant, A:. Before solving these equations, we



40

first observe that the operators on the left-hand sides of these equations are almost the

same as those in the case of the fundamental (n = 1, m = 0). Therefore, the homogeneous

system will admit a nontrivial solution and the corresponding inhomogeneous system will

have a solution if and only if the right-hand sides of Eqs. (2.1-13) to (2.1-17) satisfy a

certain condition. This condition determines the first Landau constant, AI"

In fact, when the growth rate, ao, vanishes, this condition is given by the Fredholm

alternative. In the present work, where ao 4: 0, we follow Herbert (1983) and decompose

our dependent variables as

( " )11 = - 2a---o( ")1o + ( " )11 (2.1-18)

A

where the quantities (')11 satisfy a system of inhomogeneous equations which are

independent of "_1" More importantly, when ao 4: 0, the equations for )11 may be solved

uniquely and A1 is determined by enforcing ( )11 = 0 at r = ro for on__eeof the dependent

variables (see Eq. (2.1-12b)). This procedure of Herbert is the one that we follow in the

present study.

For each nm-mode, the above equations are solved as follows. First, an

inhomogeneous Orr-Sommerfeld type equation is obtained in terms of the pressure, Pnm.

The forcing terms on the right-hand side of this equation include the known nonlinear

interactions from the previous modes and some velocity terms associated with the nm-

mode, which are set to zero in the first iteration. Second, once the pressure (not yet the

exact solution) is calculated, equations (2.1-14), (2.1-15) and (2.1-16) are then solved for

Unm, Vnm and Wnm respectively. Third, the pressure and velocities are updated by a

second iteration and the process is repeated until the solutions no longer change. Usually

three to six iterations are enough to bring the final two successive solutions to within a
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fraction of a percent of each other. Finally, equation (2.1-13) is used to solve explicitly

for Pnm using the last calculated values of the velocities and the pressure.

The Orr-Sommerfeld-like equations are solved by finite difference matrix methods

where the governing ordinary differential equations are replaced by difference equations

using central difference approximations to the derivatives to yield a system of algebraic

equations (Paragiri, 1985). A fourth-order scheme (truncation error is O(Ar) 4) is employed,

which translates the ordinary differential equations into a pentadlagonal system of

equations which is solved by standard L-U decomposition. In order to ensure the

convergence of the numerical results, we require that the calculated eigenvalues and modes

be independent of the input parameters such as the number of mesh points N. We ran

numerical experiments for different values of N (between 100 and 600) and rmax (i.e., the

radial location of the outer boundary condition; between 3.0 and 6.0) and decided that

N = 200, rma x = 4.0 and Ar = 0.02 give accurate results. For example, the relative errors

in the calculations made with these values (N = 200, rma x = 4.0) and those with (200, 6.0)

and (400, 4.0) were 0.002% and 0.001%, respectively (incompressible and cold jet, Re = oo,

a = 1.25, //= 0). Since the theoretical approach is based on a perturbation about the linear

solution, the linear problem is solved first, and the higher modes are then found in

succession. The solution is obtained to O(A3). The eigenvalues are found by the Newton-

Raphson method, which is a local not a global method, where iterations (usually three to

six) are performed until Eq. (2.1-12) is satisfied. Our (most unstable) eigenvalues agree

with those of Batchelor and Gill (1962), Michalke (1964), Morris (1976) and Michalke and

Hermann (1982).

The boundary conditions satisfied by the disturbance pressure are:

Pnm(0) = finite, Pnm(OO) = 0 (2.1-19)
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Since the base flow derivatives, U" and R', vanish as r ---, 0 and as r --, oo, the pressure,

Prim, satisfies a modified Bessel-type equation, and therefore, the asymptotic solutions of

Pnm which satisfy boundary conditions (2.1-19) are

Pnm(r-¢0) ~ Ir_8 [(nSots + M _ R(r_0) A2(r---.0))x/2 r] (2.1-20a)

Pnm(r--.oo) ~ Kn/_ [(n2a t + M 2 R(r---.oo) A2(r---.oo))1/2 r] (2.1-20b)

where In/_ and Kn/_ are the modified Bessel functions of order n/_. Recall that _ is the

azimuthal mode number. Physically, the boundary conditions mean that the flow is

inviscid near the centerline of the jet and at large r. In the numerical calculations, the

outer boundary condition (r -. oo) is implemented at r = 4.0.

2.2 The Incompressible Shear Layer

We briefly digress to derive the weakly nonlinear characteristics of a mixing layer

in the viscous critical layer limit. In Chapter 5, we study the (strongly) nonlinear behavior

of a mixing layer numerically and it is desirable to compare the latter with the former.

These weakly nonlinear results for the mixing layer could be obtained from those for the

jet in the limit of (momentum thickness)/(jet radius) --, 0, but it is simpler to start anew.

We shall provide only the essential results as this derivation was also given by Herbert

(1983).

The streamfunction _x,y,t) of an instability wave riding on top of a parallel flow,

with velocity U = [U(y),0], obeys
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[ i } a ]I V 4- U a Vz_ I.Y'_ - _V 2

= [o_ a__ay ax °_ B-_-lV'_"cgx o_ (2.2-1)

where all lengths have been nondimensionalized by the momentum thickness of the base

flow, 8. and all velocities by the value of the external stream at y = +oo [i.e., U(y ---, 00)].

Therefore, the Reynolds number is Re = 8. U(y---, oo)/v, where v is the kinematic

viscosity. As usual, the disturbance is expanded in its Fourier components, 6n(Y,t),

oo

Z ein(ax-7(t)) (2.2-2)_x,y,t) = 6n(y,t)

n=-CO

where o_ is the wavenumber and ")(t) is undefined at this point. Furthermore, each of the

harmonics $n(y,t) is expanded in terms of the small amplitude A(t)

oo

_n(Y't) = An(t) Z $nm(Y) A2m(t) ;

m_

n >_0 (2.2-3)

After substituting Eqs. (2.2-2) and (2.2-3) along with an amplitude expansion

(2.l-ll) into Eq. (2.2-1) and separating out the various Fourier components and powers of

the amplitude, the following hierarchy of equations is obtained for the mode shapes

 nm(Y),



A V n + in_, U" _nm

m

= 7. [2(m-k) a k + n_kl V_ _n m-k

k=l
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where

and

A(y)

+ _ N[_bLk'_n-Lm_k ]

L=0 k=0

m m-L

L=I

+ N[_bn+L m_L_k,__Lk ]}

= 2ma o + ina(U-c o)

2 d2
V n = -- _ n_a2 ;

dy2

d_knN[_bkn,_Lm]=ia L d---_" k_kn d_}VL_Lm

(2.2-4)

The operator N expresses all the nonlinear interactions that are relevant to a particular

( )nm mode. These are, of course, known from the lower levels of the hierarchy. Recall

that Ak (k = 1,2,...) are the Landau constants

Ak = ak - iwk

and Ao = ao - koo is the linear eigenvalue; ao is the growth rate and oJo is the frequency.

Note from Eq. (2.1-11) that
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OO

_d.2=dtE _m A2m

m=0

so that the above quantity is essentially a frequency (which in a nonlinear theory depends

on the amplitude). Therefore, _t) is a measure of the phase of the disturbance. The

boundary conditions satisfied by the disturbance are

_nm(Y) - e+nay as y _ g oo (2.2-5)

The mode shapes are arbitrarily normalized according to

OO

m=0

_lm(Y) A2m ffi 1 at y = 0. (2.2-6a)

so that

_1o(0) = 1

_m(0) = 0 m -- 1,2,... (2.2-6b)

It is precisely this normalization which defines the complex Landau constants _k

(k = 1,2,...).

We shall solve (2.2-4) for the following modes: O(A) linear mode (n,m) - (l,0);

O(A 2) second harmonic mode (n,m)= (2,0); O(A 3) third harmonic mode (n,m) -- (3,0);

O(A _) mean flow distortion mode (n,m) = (0,1); O(A _) distortion of the fundamental mode

(n,m)--(l,l); O(A 4) distortion of the second harmonic mode (n,m)= (2,1); O(A 4) mean

flow distortion mode (n,m)= (0,2); and O(A s) distortion of the fundamental mode



(n,m) ffi (1,2). The mode (n,m)

nonlinearities first enter at O(A2).
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= (0,0) is set to be equal to zero to ensure that

The linear eigenvalue "_oand the corresponding mode shape _1o are obtained by the

method of Paragiri (1985). The higher order modes are obtained by solving (2.2-4) in

succession and the Landau constants are determined from the normalization condition

(2.2-6b) and a decomposition of the type (2.1-18) [see Herbert (1983)]. The differential

equations are converted into a pentadiagonal system (fourth-order accuracy in grid size so

that the truncation error is O(Ay) 4) of linear algebraic equations and these are solved by

L-U decomposition. The method is very robust and efficient and we did not encounter

any serious numerical problems. Numerical experiments were carried out (the number of

mesh points was varied from 201 to 601) to ensure convergence via the insensitivity of the

eigenvalues and modes to assigned input parameters to arrive at: N ffi number of mesh

points or the number of algebraic equations = 401, domain from y =-4 to y = 4 (the

boundary conditions are enforced at these values of y) and Ay = 0.02 (see our remarks on

page 41).

2.3 Strong Nonlinearities

In the temporal nonlinear stability theory (Stuart, 1960; Watson, 1960; Herbert,

1983) of unstable flows, a small single disturbance of linear growth rate ao, amplitude A(t)

and axial wavenumber a will, due to nonlinear interactions, generate higher harmonics

with wavenumbers na (n = 2,3,.-.) and distort the mean flow (via the zeroth harmonic;

n--O) during the evolution of the flow. Once the flow is perturbed by an unstable

fundamental wave, e lax, its amplitude increases exponentially with time until it interacts

2iax
with itself to generate the second harmonic e (the sum mode) and with its complex

conjugate to generate the zeroth harmonic eOiax (the difference mode). Once the second



47

harmonicis in the flow, it interacts with the fundamental to generate the third harmonic

3iax
e This is how the third harmonic appears initially. Further interactions between

these harmonics will generate other harmonics, products of which will also produce new

harmonics or reinforce others that already exist in the flow. The flow will then be made

up of all the harmonics of the fundamental.

Any numerical solution of the Navier-Stokes equations can only account for a finite

number (but moderately large) of these product interactions. In our analytical work, we

can formally calculate all the interactions via the hierarchy of equations expressed by

(2.2-4). In order to examine the accuracy of truncating this hierarchy at a low level, we

perform some numerical studies on an incompressible mixing layer.

The central idea of classical weakly nonlinear theory is that the second harmonic

interacting with the fundamental reproduces the fundamental. In essence, the fundamental

exists for two reasons: first, it is the principal disturbance which is placed in the base flow

and, secondly, it is also generated by the mechanism just described above. This

mechanism can either increase or decrease the total amount of the fundamental - in other

words, nonlinearities may destabilize or stabilize the flow.

In the following numerical work, we wish to adhere to this central idea of classical

weakly nonlinear theory and consider the first few harmonic interactions. The principal

difference between the numerical and analytical work is the treatment of the critical layer.

In the analysis, which is an asymptotic solution of the truncated equations for small

amplitudes, the critical layer is linear (to first order) and viscous, whereas in the numerical

work, it is nonlinear and viscous. A comparison of these results will show (at least

qualitatively) the amplitude of the instability wave at which the critical layer becomes

strongly nonlinear. The nonlinear evolution of a two-dimensional shear layer is described
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by Equation (2.2-1). The disturbance streamfunction is once more expanded in a Fourier

series in the axial variable x,

OO

_x,y,t) = L _n(Y't)
ein_(x-ct) (2.3-1)

n---oo

where c is the disturbance phase velocity. The disturbance is considered to be periodic in

x but its time dependence is arbitrary since Cn atso depends on time, and the exponential

time factor associated with the phase speed is extracted for convenience only.

Substitution of (2.3-1) into (2.2-1) yields a set of equations for each Fourier

component. The equations for the fundamental mode ¢1, the first harmonic ¢2 and the

mean flow distortion ¢o are (Stuart, 1960)

[o ], ,_/+ i_u-c) v I ¢1 - ia u_ ¢1 - _ v_ ¢1

. * " - v: ¢_iaCzyV_¢ 1 +2ia¢,-V 1¢.1y 2ia¢*ly

- ia ¢'1 V: Czy + ia ¢1 ¢oYYy - ia Coy V21¢1

+ O(¢z¢3) (2.3-2)

0 1 1 43i + 2ia(u-c) v",.¢,_- 2i_ u" ¢2 - _-_v,. ¢_

= ia (¢1 ¢lyyy - ¢1y ¢lyy) + 0(¢o¢_.) (2.3-3)

1
¢oyyt - _'_ ¢oYyYy ia(¢l ¢*IYYY + ¢1y ¢*= lyy

- ¢'1 ¢lyYy - ¢'1y ¢lyy) + O(¢2 ¢_-) (2.3-4)



where

Oq2
V n = =-_- n2,, 2 n = 1,2,...

df,{_

oq_ n

*ny "

and * denotes complex conjugation.
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The phase speed c is assumed to be given from linear stability theory. In this work,

only _bl, _bo and _b2 are kept and higher order terms are neglected because they are of

higher order in amplitude. The basic idea of this temporal analysis is to solve numerically

the above coupled nonlinear partial differential equations and then compare the solution

with that obtained from the weakly nonlinear theory (Section 2.2). The same interactions

are contained in both.

One might note, for historical reasons, that (2.3-2) to (2.3-4) are also the starting

point for the Stuart-Watson weakly nonlinear theory - in their theory, these equations are

solved by amplitude expansion (2.1-9) for small amplitudes. This automatically forces the

critical layer to be viscous, since it assumes that there is a uniformly valid (in y) solution

(which is _bao) about which the small nonlinear perturbations may be carried out. When

these equations are solved numerically, the only assumption is that the third harmonic is

unimportant - the critical layer may be nonlinear.

In order to simplify the equations, the vorticity is introduced

fln(Y,t) = -Vn 4_n ; n = 0,1,2. (2.3-5)

and Equations (2.3-2), (2.3-3) and (2.3-4) reduce to



where

gn(Y)

1 fl + gn(y ) fl ,, Fn(Y,t )lint- R"-e nyy n

I nZa'- + incr(U-c)
Re

5O

(2.3-6)

and

Fl(y,t) = ia(-U" _a + _2y fl 1 + 2_2 flly - 2_b*ly flz

- _*x fl2y + _1 floy - _oy fll)

= ia( -2U_ _2 + _bl flly - DI _ly)F2(y,t)

Fo(Y,t) " ia(_a fl*ly + _ay 12"1 - _*x flay - _*ly fix)

In order to solve the system of parabolic partial differential equations (2.3-6), the

following initial and boundary conditions are used

where

and

Dl(y,0) ,, -A(0) [ dy z a_ _1o

flz(y,0) ,, rio(y,0) = 0

Dx(-+oo,t) = Dz(_+o¢,t) = n0(_+o¢,t) = 0

¢1o(Y) = shape of the fundamental as obtained from linear stability

theory

A(O) ,, A(t=O) = specified initial amplitude

Initially, only the fundamental wave is present in the flow. Its shape _lo(Y) and

phase velocity c are obtained by solving the Orr-Sommerfeld equation for various



51

wavenumbers cx and Reynolds numbers. As y = :too, the flow becomes linear and inviscid,

and so the vorticities of the Various modes are set to zero. This is the required boundary

condition in the external flow.

Equation (2.3-6) is discretized using Crank-Nicolson (Mitchell, 1969; Peyret and

Taylor, 1983) differencing in time. That is, knowing fl at the k-th time step, to advance
n

to the (k+l)-th step all terms other than the time derivative are taken to be the average of

the values at the two time levels. The Crank-Nicolson approach is characterized by a small

time truncation error and is known to be numerically stable in simpler (i.e., linear)

problems for which the theory of numerical stability is well developed. Fourth-order

space differencing is employed, so the overall truncation error is of order {O(Ay)4 +

O(At)_; in this work Ay = 0.04 and At = 0.02}. Numerical experiments (where the number

of mesh points N and the sizes of Ay and At were varied from 201 to 601, 0.01 to 0.10

and 0.005 to 0.05, respectively) were performed to ensure the insensitivity of the solution

to assigned input parameters such as N (number of mesh points; N = 201 in this work),

domain of solution (in this work, the domain in y is from y = -4 to y--+4 and in t is

from t = 0 to t = 20 to I00 depending on the time that it takes the disturbance to saturate)

and the size of At. The nonlinear terms are evaluated first explicitly at the k-th time step

to obtain the solution at the (k+l)-th step; then the average is used to update the solution.

Changes in the nonlinear terms between two successive time steps are small and, therefore,

no further iterations are employed. Once fl is known, Equation (2.3-5) is used to solve
n

for #n"
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JET RECEPTIVITY

Hydrodynamic stability deals solely with the behavior of instability modes. The

detailed mechanisms of the initial creation of these modes are not considered. In free

shear flows, for example, travelling wave disturbances have been observed in the

developing downstream zone, and although stability theory attempts to describe their

growth, little effort has so far been made to discuss the process of their generation. Balsa

(1987) studied the receptivity of a typical free shear layer to pulse-type and periodic

excitation by solving the initial value problem and studying its long-time behavior, and

found that the shear layer is very receptive to high-frequency disturbances that are

generated near the centerline of the layer. The connection between the perturbations in

the flow and the external disturbances which generate them may be termed the

"receptivity _ of the flow. The receptivity of the flow, or the magnitude of perturbations in

the flow, depends on the magnitude, the location, and the frequency of the input

excitation.

The study of receptivity is intimately connected with the initial value problem and

the excitation of the various instability modes by the initial disturbance. Fourier and

Laplace transforms are used to solve the linear equations governing the perturbations in the

jet and the long-time behavior of the solution is extracted using the saddle point method

(Carrier, Krook and Pearson, 1966). For example, a pulse input in the jet generates a

wave packet (a group of waves) which moves with the flow at its group velocity and

spreads while it grows.
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3.1 Basic Equations

Consider the linear evolution of an incompressible inviscid forced jet subject to an

axisymmetric disturbance. The mean axial velocity is U(r) and the perturbation equations

are

Continuity:. Ou Ov v_ + _ + -r " 0 (3.1-1)

x-Momentum: + U _- + U'v + = 0 (3.1-2)

Ov Ov O_p_ e 6(x) 6(r-r o) 6(0 (3.1-3)r=Momentum: _- + U _x + Or --

where

e = source strength

ro = transverse source coordinate

6(x) = delta function

d
prime denotes d--_-

and (u, v, 0) and p are the perturbation velocity and pressure.

The perturbations in the flow are produced by a force which acts on the base flow

at x = 0, r = ro and t = 0. Since the problem is linear, the source strength _ is taken to be

unity with the understanding that all perturbation quantities are proportional to e. The

force is represented by the right-hand side of (3.1-3) and the transverse coordinate ro is

arbitrary. There is no loss in generality by taking the x-coordinate of the force to be zero.

The assumption of linearity carries with it the usual restrictions to small initial

perturbations and implies that the disturbance does not significantly modify the base flow

in the course of time. The assumption of incompressibility carries with it the usual

restrictions to low Mach number flows. The assumption of zero viscosity is justified on
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typical inflectional jet base velocity profiles are unstable to inviscid

The topic of normal modes (Drazin and Reid, 1981), which forms the basis of

linear hydrodynamic stability, is concerned with the determination of stability boundaries,

complex growth rates and mode shapes. While studies of normal modes can shed light on

the stability of the flow, such studies say nothing about when and how the modes actually

evolve and how their amplitudes are related to the strength and the location of the input

disturbance. Furthermore; in practice one would expect to see not only one normal mode,

but some superposition of many normal modes which is determined by the nature of the

initial disturbance. Alternatively, this work is concerned with the subsequent development

of the solutions u(x,r,t), v(x,r,t) and O(x,r,t) of the linearized equations for t > 0 provided

the flow is subject to an initial disturbance that is impulsive in time and localized in space.

The result of this excitation is a wave packet type disturbance which travels with the flow

at its group velocity and which grows exponentially as it travels.

The governing equations (3.l-l, 3.1-2, and 3.1-3) are solved by using Fourier

transforms in x and Laplace transforms in t. Let the Fourier transform pairs be

OO

" Ioo (')
(.) (a,r,t) = (x,r,t) e -iax dx

iOO ^(-) (x,r,t) = _ _00(. ) (a,r,t) e i°_x da

and the Laplace transform pairs be
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1 f _) (a,r,n) eTMdn(') (a,r,t) = _ Br

where a is the complex axial wavenumber and Br is the Bromwich contour in the complex

fi-plane.

After performing the Fourier and Laplace transforms on our governing equations,

and assuming that no perturbations exist anywhere in the flow prior to time t = 0, the

following equations are obtained

d'_
ic_ + _- + -r = 0 (3.1-4)

(fi + iaU) "_+ U'_ + ial3 = 0 (3.1-5)

(fi + iaU) "_ + = _r-r o) (3.1-6)

The base velocity profile used and a typical wave packet like solution, v(x,r,t), are

shown in Figure 2. The mean flow consists of two straight line segments joined by a

smooth curve satisfying U'/r- I2' = 0. This profile is chosen for simplicity so that a

closed form solution can be obtained. The velocity profile is not differenfiable at r = r 1

and at r = r2, but this should not alter the physics of the problem, as was justified by

Balsa 0987) where he found (in studying the instability of piecewise linear free shear

layers) that the temporal and spatial instabilities of an infinitely differenfiable velocity

profile at large Reynolds numbers are virtually identical with those of the inviscid
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Figure 2. (a) Mean velocity profile. U(r) = 1 - ,(r'-r2;/rr2-r2_l--,2 -1, for r:<r<r2._ (b) Typical
behavior of the radial velocity component with x after a long time has
elapsed.
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instabilities of a piecewise linear profile. The source location ro is arbitrarily chosen to be

between rx and rz and different source locations will yield receptivities.

Eliminating _ and _ in Eqs. (3.1-4, 3.1-5 and 3.1-6) in favor of _(a,r,fl), the

following inhomogeneous Rayleigh-type ordinary differential equation in r is obtained

(which is actually Bessel's equation)

( 1] -°t2 6(r-ro)
d2_ 1 d_ ot2 _ (3.1-7)
dr----f+ - ___ + =r dr (f_+kxU)

The solution of (3.1-7) is

_(a,r,f)) =

c1Ix(on" ) 0_<r <r a

c2 Ix(at ) + ca Kl(ar ) r x _<r _<ro

c4 Ii(ar ) + c6 Kl(ar ) r o _<r _<r 2

c8 K l(ar ) r > r2

(3.1-8)

where c 1 through ce are constants and Ix and K 1 are the modified Bessel functions of

order 1.

Four conditions at interfaces r1 and r2 and two conditions at the source location ro

are needed to obtain a unique solution for _(a,r,fl). The mean velocity U(r) is continuous

across rx, ro, and ri; therefore, _ is continuous there too, and integrating (3.1-7) across

r = r o yields one jump condition for _', where the prime denotes differentiation with

respect to r. The continuity of pressure across the two interfaces further provides two

more jump conditions. All three conditions are listed below:.



where

Let

and

(n, ix) Cv'(r_+) - _'(r;)) -- ia _(rx) U'(r_+)

(fl + ia U o) (-v'(ro+) - _'(ro)) = -a2

fl _'(r +) - W(r;)) = -ix _(r 2) U'(r;)

Uo = U(ro)

b2 = arx Ix(art)Kx(arx)U'(r+)

bx = artIx(arx)I1(ara)U'(r+)

dl = ar z Kx(ar2) Kx(ar2) U'(r2)

el = ar 2 Ix(ar_) Kx(ar2) U'(r2)

b a = _ + b 2 - ex

b4 = ae; + b,e x - bxdx

Lo = aZro Ix(ar o)

L2 = aZr o Kx(ar o)

zx = i(dxL o - exL2)

zz = i(b2L o - bxL2)

-iba- _J-b_- 4b4W x _= "-_

-iba l z
,= -_ + _[-b3q - 4b 4W 2

F(n,a) = (f_+ iaUo) (0 - w1) (n - %)

58



are

59

The matching conditions at r1, r2 and ro are used to evaluate cl through c6 which

and

C 1

C2 m

C3 I

C 4

C6 w.

C 6

(fi+ iaXflL, + zI)

F(n,a)

[(fi+ ia)+ ib2IfiL2 + zl]

F(fi,a)

-ib1(fiL,.+ zI)

F(fi,a)

id1[Lo(f/+ia)+ z,]

r(n,:,)

(fi- iel)[Lo(f_+ icr) + zz]

F(fi,a)

fi[Lo(fi+ ibm.)+ z2]

3.2 Asymptotic Solution

The transverse velocity component is

v(x,r,t) = 1 _(a,r,fi) eiax + fit dfi da
g.B dBr

(3.2-1)

where Br is the Bromwich contour of integration in the complex fi-plane.

There are three poles in the fi-plane, as seen from the zeroes of F. The first (at

-iaU o) corresponds to a convected mode, the second (at w:) corresponds to a stable mode

and the third (at w,] corresponds to an unstable mode. The integral in the fi plane is

evaluated by the method of residues at the pole fi = w 2 and the contributions from the

convected and stable modes are ignored. This yields
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• [ _° eiaX+Wztv(x,r,t) = 1 f da + "'"
d-O0

where

fir,a) = lira [(fl - w:) V (a,r,fl)]
f_w_

On the other hand, the dominant contribution to the a-integral comes from the

saddle point of this unstable mode (Balsa, 1987). Since the wave packet is convected by

the flow, it is simplest to observe it in a moving coordinate system. Let the (real) group

velocity G be (Gaster, 1965)

G = x (3.2-2)
t

Then the solution can be written as

v(x,r,t) = v(G,r,t) = 2-_ IF f(r'a) eh(a)t da
(3.2-3)

where r is a deformed contour which passes through the saddle point and

h(a)= w_(a)+ iaG = h(a,G)

For any given G, the saddle point a,(G) is given by

dh dwz
= -- + iG = 0 (3.2-4)

da da

By expanding fir,a) and h(a) about the saddle point a,, the following long time solution is

obtained
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v(G,r,t) = _ f(r,_,)

J 21rfd'h t)("*)

+ complex conjugate

et h(_,)

(3.2-5)

To recap, the long-time solution, as given by Equation (3.2-5), is obtained by

solving the initial value problem and then applying the saddle point method. It describes

not only the general structure of wave packets, but also establishes the explicit connection

between the perturbations in the flow and the external disturbances which generate them.

This is contained in the function f(r,a,). The general characteristics of the solution are:

(l) the amplitude of the wavepacket grows like t-l/2 exp[t Real(h,)] where h, = h(cx,).

The factor t-l/2 arises from the interference of the various oscillating components of the

packet; (2)the wave packet convects with the flow and an observer moving with the

packet will see the wave system growing in both space (x) and time (t); note

a, = a,(G) = a,(x/t); and (3) at large values of time and at any prescribed radial location,

the transverse component of the velocity v(x,r,t), which looks like a modulated wave train

when plotted against x (x = Gt; see Figure 2), depends on the location of the initial

excitation, ro.

In physical terms, the instability may be described qualitatively as follows. The

initial disturbance, which is an impulsive excitation, is localized in space and time.

Because of this, all wavenumbers and frequencies will be excited and the modes associated

with this spectrum will grow according to the modal analysis of linear stability theory.

The actual disturbance is a superposition of all these modes that continuously experience a

certain amount of interference (i.e., cancellation - hence the saddle point). However, for
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large values of time, the most unstable mode will win out and this mode will dominate the

center of the packet. The disturbance decays rapidly upstream and downstream of its

center as it travels. Thus, relative to an observer moving with the group velocity, the

disturbance grows exponentially in time. But the disturbance measured at any fixed station

x eventually decays rapidly with time because the localized disturbance travels away;

indeed, at a distant station the disturbance may appear first to grow and then decay

rapidly as its center passes by. This flow is convectively unstable.

In this work, attention is focused on the effect of the position of the source on the

magnitude of the disturbance velocity. For a specified positive group velocity, the solution

(3.2-5), which represents a travelling wave system downstream of the source, is obtained

numerically. The solution depends strongly on the location of the source of excitation, ro,

so that different locations of the source generate different perturbations, v(x,r,t), and the

"most receptive" location is the one which will result in the generation of maximum

perturbations.
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THE LINEAR RESPONSE OF THE JET

The rest of this dissertation is devoted to a discussion of our numerical results. In

this chapter, the linear instability of a round jet is considered. First, the linear growth rate

(ao) and phase speed of the disturbance as functions of wavenumber (_), for various

Reynolds numbers, temperature ratios, and jet Mach numbers, are presented. Then the

receptivity of the jet is also given as a function of source location. The linear results

provide information on the initial stages of the instability and are needed for the discussion

of the nonlinear results, to be presented in the next chapters.

A linear disturbance is characterized by:. (I) small amplitude so that the products of

the perturbations may be neglected and the flow is made up of (in addition to the mean

flow) the fundamental disturbance alone. The linearization leads to an Orr-Sommerfeld

type equation (Lin, 1955; Drazin and Reid, 1981) whose solution gives the shape, phase

speed and growth rate of the disturbance; (2)exponential growth because energy is

transferred from the mean flow to the disturbance. At later times, the nonlinear

interactions of the dominant mode generate higher harmonics and distort the mean flow,

thereby moderating the exponential growth. The new flow will then be made up of all the

harmonics of the fundamental. Linear theory is useful not only because it can describe the

early stages of instability (Michalke, 1964, 1965; Michalke and Hermann, 1982; Petersen

and Samet, 1988) but also because the linear solution is the limiting one for the nonlinear

problem as the amplitude tends to zero. For example, in the weakly nonlinear theory

(Stuart, 1960; Watson, 1960), where an expansion in the time-dependent amplitude A(t) is
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used(seeEquations 2.1-9 and 2.1-11), the first order approximation is given by the

solution of the linear instability problem, and the other terms represent a hierarchy of

nonlinearities.

For a given base flow [U(r), R(r)], where U(r) is the mean axial velocity at some

downstream location and R(r) is the mean density there, for a given real wavenumber

vector (a, _), where a is the axial wavenumber and _ is the azimuthal wavenumber, and

for a given jet Reynolds number (Re), Mach number (M) and temperature ratio (T*), the

linear problem is solved to obtain the growth rate, phase speed and shape of the

disturbance. The eigenvalues depend on a, p, Re, M and T*. The instability, therefore,

depends not only on the mean flow profiles and the length scales of the disturbance but

also on viscosity, compressibility and heating.

An obvious effect of viscosity is to dissipate the energy of any disturbance and

thereby stabilize a flow. The molecular diffusion of momentum tends to smooth out the

velocity differences of a disturbance. Linear stability calculations based on the Orr-

Sommeffeld equation (Betchov and Szewczyk, 1963) have indicated that shear layers are

stabilized by viscosity and that the amplification rates are very insensitive to variations in

Reynolds number, provided Re > 100. In most experiments (Miksad, 1972), the Reynolds

number (based on the initial momentum thickness) is equal to 100 or more, and vortex

roll-up is not significantly affected by viscosity. In the isothermal subsonic jet where

Tc = Too and M _ 0, the jet Mach number M appears explicitly in the disturbance

equations and influences the instability via the basic density distribution which is no longer

constant because the base flow is compressible. Spatial instability calculations (Michalke,

1971) show that with increasing Mach number M, the growth rate is reduced, hence the
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flow becomes less unstable, and that the phase velocity is sensitive to the Mach number

only at lower frequencies where, in contrast, the growth rates become nearly independent

of M. Furthermore, Michalke (1971) found that the stabilization occurring as the Mach

number increases is stronger for the axisymmetric (_ = 0) disturbance than for /_ = 1.

Michalke (1971) found that the nonisothermal jet has a slightly lower phase velocity, but a

larger growth rate which, however, peaks at a slightly lower frequency as compared with

the isothermal jet. Furthermore, the range of unstable frequencies is reduced by the

heating.

Heating may be stabilizing or destabilizing depending on the wavelength of the

disturbance. In order to isolate the effect of heating, a simple inviscid analysis (similar to

that of Batchelor and Gill for the isothermal incompressible jet, 1962) is carried out for a

cylindrical vortex sheet type model when the Mach number is zero and the temperature

jump across the sheet is 1 - T*. For these particular choices of the mean velocity and

density profiles [U(r) = 1 for r < 1, and 0 for r > 1; R(r) = 1 for r < 1 and T* for r > 1]

and for a normal mode solution proportional to exp(iax + iFO - iaCot), the perturbation

pressure mode is governed by the modified Bessel equation and the eigenvalue problem is

completely determined by requiring that the solution is finite at r = 0, decays as r -, oo,

that the pressure is continuous across the vortex sheet, and that the interface r = 1 (i.e., the

vortex sheet) is a material surface. In the limit as ot -, 0 (i.e., for long waves), the

eigenvalue co = cr + ici, is given by
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C O ---- f I/(I+T*) + i v/'T'_/(I+T *) , fl$0, a-.0

1 , fl = 0, cz ==)0

where c r is the phase speed and ao ffi ,',ci is the growth rate.

This simple result, which is consistent with the numerical calculations of this

investigation, and which agrees with the inviscid calculations of Ng (1989), is applicable

for long waves and provides two interesting results. First, while heating (T* > 1) does not

alter the speed of long axisymmetric waves, it reduces the speed of long azimuthal waves.

When the jet is isothermal (T* ffi 1), long waves with axial symmetry travel with the speed

of the center of the jet, whereas all those not having axial symmetry travel with half that

speed (Batchelor and Gill, 1962); and second, the growth rate, ao, of long axisymmetric

waves is nearly insensitive to heating, whereas that of nonaxisymmetric waves is reduced

by heating. This means that long axisymmetric waves are more stable than long azimuthal

waves.

4.1 Linear Stability Results

Temporal linear stability theory predicts that a continuous band of waves, corre-

sponding to a band of wavenumbers, is exponentially amplified in time. The theory is

good as long as the amplitude of the unstable wave is small so that the nonlinear terms in

the equations of motion can be neglected.

The parameters affecting jet instability are the wavenumbers (a,fl), the Reynolds

number (Re), the jet Mach number (M), the temperature ratio (T* = To/Too) and the jet

momentum thickness (8.). In this work, the momentum thickness is taken to be 0.2
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(exceptin Section4.1.5,wherethe effect of 0, on the instability is presented). The main

assumptions made in the analysis are: (1) the base flow is parallel. A parallel flow is not

an exact solution of the Navier-Stokes equations, but only an approximate one for large

Reynolds numbers, (2) the fluid is a perfect gas with constant specific heats

(g = Cp/C v = 1.4), constant thermal conductivity and constant viscosity; (3)the Prandd

number associated with the base flow is unity. This assumption, which is used in deriving

the mean density distribution (Schlichting, 1979; see Appendix A) means that (as far as the

base flow is concerned) the molecular diffusions of momentum and heat are of the same

order. As far as the perturbation flow is concerned, we assume that both viscous and

conduction effects are unimportant but we retain the former in order to treat neutral

waves when the flow is isothermal; (4)the base pressure is constant and is equal to the

ambient pressure; (5) the disturbance motion is not influenced significantly by the diffusive

process of heat conduction; (6)the base density profile is related to the base velocity

profile by means of the Crocco equation; and (7) the disturbance is taken to be periodic in

x and 0 and is evolving in time. The axial wavenumber a is real and both the linear

growth rate ao and the phase speed c of the disturbance depend on a. Temporal waves on

a jet column are dispersive, whereas they are not in a mixing layer. Physically, the jet

instability is caused by the induction of the vorticity contained in the jet shear layer

(Batchelor, 1967; Drazin and Reid, 1981).

4.1.1 Mode Number Effects

The jet instability for inviscid, incompressible (M = 0) and cold (T* - 1.0) flow is

shown in Figure 3. The linear growth rate and the phase speed of the axisymmetric

(B = 0), the first azimuthal (B = 1) and the second azimuthal (B = 2) disturbances versus

axial wavenumber are shown and it can be seen that the first azimuthal disturbance is
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Figure 3. Inviscid instability characteristics of a round jet for various azimuthal mode

numbers: Linear growth rate ao (solid lines) and phase speed c (dashed lines)
as functions of axial wavenumber. M = 0.0; T" = 1.0; 0, = 0.2.
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more unstable than the other two, with the second azimuthal disturbance being the least

unstable. For example, the maximum growth rates of the disturbances with /9 = 1, /9 = 0

and /9- 2 are 0.174, 0.133 and 0.039 respectively. The range of unstable wavenumbers

depends on the azimuthal mode number and the neutral wave numbers of the disturbances

with/9 = l, /9 = 0 and /9 = 2 are 2.42, 2.38 and 1.66, respectively. The convection velocity

or the phase speed of the disturbance depends on the wavenumber which means that the

waves are dispersive (i.e., different waves travel at different speeds). Axisymmetric

disturbances travel faster than first and second azimuthal ones and second azimuthal waves

travel at slightly above the average jet velocity (which is equal to 0.5). Long waves with

axial symmetry _ = 0) travel with the speed of the center of the jet, whereas those not

having axial symmetry (/9 = 1,2) travel with half that speed. The phase speeds of the most

amplified disturbances with/9 = 0,/9 -- l and/9 = 2 are 0.76, 0.62 and 0.53, respectively.

4.1.2 Viscosity Effects

It is known (Betchov and Szewczyk, 1963) that for an incompressible shear layer,

viscosity is always stabilizing and that the stability characteristics of the viscous flow

become asymptotic to those of the inviscid flow at a Reynolds number of, approximately,

100. In a jet, viscosity may be stabilizing or destabilizing, depending on the wavenumber

and the mean velocity profile. For example, for the algebraic profile U(r) = l/(l+r2) ", the

growth rates at a wavenumber of 0.38 (cold and incompressible jet, azimuthal mode _ = l)

are 0.02436 and 0.02142 for the viscous (Re = 150) and inviscid cases respectively. This is

in perfect agreement with the work of Lessen and Singh (1973). However, for the tanh

family of profiles (see Appendix A and Figure l), the effects of viscosity are usually

stabilizing, and the instability characteristics of the viscous flow become asymptotic to those
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of the inviscid flow at a Reynolds number of approximately 2000, indicating that viscosity

is more important in jets than in mixing layers.

The inviscid and viscous instability for an incompressible (M = 0) and isothermal

(T* = 1) jet is shown in Figure 4 where the linear growth rates of the axisymmetric and

the first azimuthal disturbances are plotted as functions of wavenumber. Viscosity

stabilizes the flow and reduces the range of unstable waves; for example, the inviscid and

viscous (Re = 500) maximum growth rates of the axisymmetric disturbance are 0.133 and

0.104, respectively. The inviscid and viscous (Re = 500) maximum growth rates of the

first azimuthal disturbance are 0.174 and 0.149 respectively. The neutral wavenumbers of

the axisymmetric and the first azimuthal disturbances at Reynolds number of 500 are 2.17

and 2.30 respectively. It can be seen that viscosity is slightly more efficient in suppressing

the growth of short (near-neutral) waves than long ones.

4.1.3 Mach Number Effects

In Figure 5, the influence of the jet Mach number M on the jet instability is

shown. The linear growth rate of the axisymmetric and the first azimuthal disturbances

versus wavenumber is shown for an isothermal (1"*- 1.0) flow. With increasing Mach

number, the growth rate is reduced, hence the flow becomes less unstable. For example,

the maximum growth rates of the first azimuthal disturbance (at Re = 500) are 0.149 and

0.125 for the incompressible (M = 0.0) and compressible (M = 0.9) flows, respectively.

The growth rates of the disturbances with /_ = 0 and //_, 1 are independent of the Mach

number at lower wavenumbers (say for ot < 0.5; i.e., long waves are insensitive to the value

of M). This result is consistent with the results of Ng (1989).
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Figure4. Inviscid and viscous instability of the round jet for the axisymmetric and the

first azimuthal modes: Linear growth rate ao as a function of wavenumber
for parametric values of jet Reynolds number. M = 0.0; T* = 1.0, 0, = 0.2.
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function of wavenumber for parametric values of jet Mach number.
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The phase speed of the axisymmetric and the first azimuthal disturbances as

functions of wavenumber is shown in Figure 6 for an isothermal (T*= 1) flow at two

Mach numbers. With increasing Mach number, the phase speed is reduced, but only

slightly. In other words, the phase velocities of both disturbances (fl = 0 and _ = 1) are

weakly dependent on the Mach number. For example, the phase speeds of the

axisymmetric disturbance (Re = 1000) at a = 1.5 are 0.74 and 0.73 for the nearly

incompressible (M = 0.1) and compressible (M = 0.9) flows, respectively.

4.1.4 Temperature Effects

The jet instability for incompressible flow is shown in Figure 7 for two temperature

ratios. The linear growth rate of the axisymmetric and the first azimuthal disturbances

versus wavenumber is shown and it can be seen that heating reduces the range of unstable

waves; for example, the neutral waves of the axisymmetric disturbance are 2.28 and 2.10

(at Re = 1000) for the cold (T*= 1) and hot (T*= 2) flows, respectively. For the first

azimuthal disturbance heating makes the flow less unstable and the growth rate at lower

wavenumbers (a < 0.6, say) is nearly independent of heating. The maximum growth rates

of the first azimuthal disturbance (Re = oo) are 0.173 and 0.163 for the cold and hot

(T*= 2) flows, respectively. When the disturbance is axisymmetric, the hot jet has a

slightly larger maximum growth rate which, however, occurs at a slightly lower wave-

number as compared with the cold jet. While heating destabilizes axisymmetric

disturbances, it stabilizes first azimuthal disturbances and near neutral waves (with fl = 0 or

_8= 1) are always stabilized by heating.

The phase speeds of the axisymmetric and the first azimuthal disturbances as

functions of wavenumber are shown in Figure 8 for an incompressible (M = 0) flow at two

temperature ratios. Heating reduces the phase speed of all waves; for example, the phase
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speeds of the axisymmetric disturbance at a wavenumber of 1.0 are 0.79 and 0.70 for the

cold and hot (T* = 2) flows, respectively. While increasing the Mach number reduces the

phase velocity only slightly (see Figure 6), heating results in moderate reduction in the

phase speed, except for long axisymmetric waves.

4.1.5 Momentum Thickness Effects

The linear results presented so far in this section were obtained when the momen-

tum thickness (8,) is 0.2. Obviously, increasing the momentum thickness is stabilizing (the

base jet flow, which is evolving in the downstream distance, becomes less unstable with

increasing 8,) because the vorticity contained in the jet shear layer (near the inflexion

point) is proportional to l/a, (i.e., maximum vorticity ~ 1/8,). The linear growth rates of

the axisymmetric and the first azimuthal disturbances as a function of wavenumber are

shown in Figure 9 for a cold incompressible flow at two values of e,. Increasing the

momentum thickness makes the flow less unstable; for example, the maximum growth rate

of the first azimuthal disturbance (Re = 5000) is reduced from 0.253 to 0.172 as 8, is

increased from 0.15 to 0.20. With decreasing 8,, the range of unstable wavenumbers

increases and as 8, --, 0 (vortex shee0, the jet becomes unstable to all waves (Batchelor and

Gill, 1962). In general, the phase speed increases slightly with increasing 8, except for

small wavenumbers (as a-, 0) where c is nearly independent of 8,. For example, the

phase speed of the axisymmetric disturbance at a wavenumber of 1.5 (Re -. 5000; M = 0;

T* ---1.0) increases from 0.71 to 0.74 as 8, increased from 0.15 to 0.20.

The above (numerically obtained) temporal instability results, which agree well with

the inviscid results of Ng (1989) and which are consistent with the spatial results of

Michalke (1971), Morris (1976) and Michalke and Hermann (1982), show that: (1)insta-

bility waves riding on a jet flow are dispersive and those with axial symmetry (fl = 0)
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travel relatively faster than those not having axial symmetry (8 = 1 and //= 2). The phase

speed decreases with increasing jet temperature (i.e., with heating); (2) the instability of a

round jet is dominated by the axisymmetric and first azimuthal modes and (with

everything else being the same) the latter is more unstable; (3) viscosity stabilizes the flow

and the stability of a viscous jet flow becomes asymptotic to that of an inviscid flow at a

Reynolds number (based on jet radius and centerline velocity) of approximately 2000;

(4) compressible jets are less unstable than incompressible jets. The maximum growth rate

decreases with increasing jet Mach increasing jet Mach number M; and (5)heating

stabilizes first azimuthal disturbances. But when the disturbance is axisymmetric, long

waves (lower wavenumbers) are destabilized and short waves (near-neutral wavenumbers)

are stabilized by heating and the maximum growth rate is slightly higher for the hot jet.

4.2 Receptivity

The receptivity analysis gives the relationship between the position of the source, ro,

and the magnitude of the resulting disturbance velocity v(x,r,t). Since the disturbance

extracts its energy from the mean velocity shear, it is expected that the largest

perturbations are generated when the source is placed in regions of high relative mean

shear. The study of receptivity is intimately connected with the initial value problem and

the excitation of the various instability modes by the initial disturbance. The long time

solution (see Eq. 3.2-5) of the initial value problem is a wave packet (Gaster, 1965, 1975;

Balsa, 1988) which moves with the flow at its group velocity and spreads while it grows.

In this work, the excitation is impulsive in time and localized in space and different

source locations result in different perturbations in the jet. In other words, the subsequent

perturbations u(x,r,t), v(x,r,t) and p(x,r,t) in the jet depend on ro and there is an optimum

position ro,ma x which will result in maximum perturbations. The most efficient way of



80

perturbing the flow is to place the excitation (i.e., the input disturbance) at ro, max because

little input energy will then be needed to excite the flow. If the input disturbance is

placed in the flow away from to,max; say, in a region of uniform base flow velocity where

the mean shear is small, then very large amplitudes of the driver will be required to

generate comparable perturbations in the flow.

The perturbation radial velocity v(x,r,t) depends on the positions x and r and on the

time t and the long time solution is valid at all large times when all the transients have

decayed; say, t = 30, 40, 50, etc. In this work, the results (wave-like shape and amplitude

of the packet) at a typical instant of time (say, t = 40) will be presented with the

understanding that the wave packet grows exponentially in time. At larger values of time,

the general wave-like character of the packet is unaltered, although its amplitude is

greater. For fixed t and radial position r, the solution v(x, r-fixed, t-fixed) as functions of

x or of G (since x = Gt and t is fixed) looks like a wave packet or a concentrated wave-

like disturbance that decays rapidly upstream and downstream of its center as it travels.

An observer moving with the packet at some average jet velocity will see a wave system

that is growing in both space and time. The amplitude of the wave system depends on the

location of the source.

In order to see if there is any connection between the optimum location of the

source ro,ma x and the transverse location in the jet at which the speed of the base flow

and the phase speed of the most amplified wave (in the linear stability sense) are equal, the

linear inviscid instability of our model jet with r_ = l and r,. = 2 (see Figure 2) is studied.

In the mixing layer with either a tanh or a piecewise linear base velocity profile (Balsa,

1987), the phase speed and the fluid speed are equal in the middle of the layer [i.e.,

U(y = 0) = c so that the critical point is at y = 0] and Balsa 0988) found that the flow is
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most sensitive to perturbations which occur near this region. Whereas in the mixing layer,

all waves travel at the same speed, in the round jet the waves are dispersive so that

different waves travel at different speeds and there is a "critical point" associated with the

linearly most unstable wavenumber.

The temporal growth rate and the phase speed as functions of wavenumber for the

model base velocity profile with r1 = 1 and r2 = 2 are shown in Figure 10. The

disturbance is inviscid, incompressible and axisymmetric and the instability characteristics

of the model flow are obtained numerically by solving for the unstable mode (w:; see

discussion below Eq. 3.2-1) when the wavenumber is real. The linear growth rate ao is the

real part of w 2 while the phase speed c is the (negative) imaginary part of w 2 divided by

the (real) wavenumber a. These results agree qualitatively with those for the tanh base

profile (see Figure 1), as can be seen by comparing Figure 3 (with _ = 0) and Figure 10.

Therefore, the unstable mode of the model flow basically exemplifies the kind of jet flow

instability that is in mind. The neutral point is at a--- a n -_ 1.036, the most amplified

wavenumber is a m -_ 0.70, the maximum growth rate is 0.111 and the phase speed of the

most amplified wave is 0.742. Since the base flow between r x _- 1 and rz = 2 is U(r) -- 1 +

(l-r:)/3 and the "critical point _ in the radial direction is that at which the fluid speed and

the phase speed are equal, the "critical point" of the most unstable wave is at r -- 1.33. It

will become clear that in order to elicit the strongest response, the disturbance should be

placed near r = 1.33. In other words, ro,ma x -- "critical point" associated with the most

amplified wavenumber.

The wave-like shape and the amplitude of the wave packet at a typical instant of

time (say, t--40) and at given radial locations are shown in Figure 11. The transverse

velocity component v(x, r-fixed, t-fixed) is plotted against the group velocity G (--x/t, t is
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fixed) for two flow geometries (one with r1 = 1 and r2 ffi 2 and the other with r1 = 0.75

and rz = 1.75) and for parametric values of the source location, r o. Essentially, the packet

at each instant of time is contained between the points G = 0 and G = 1, and the ampli-

tude of the packet reaches a maximum for an observer moving at approximately the jet's

average speed, G = 0.5. The leading and trailing edges of the packet are defined by

G=x/t =0=Umi n and Gfx/t = l =Urea x, and the disturbance is growing expo-

nentially in time in this interval. The maximum amplitude of the packet Vma x or the peak

velocity at any radial location depends on the source location to; for example, when

rl = 0.75 and r z = 1.75, the peak velocity at the middle of the axisymmetric shear layer

(r = 1.25) nearly doubles (changes from about 0.35 to about 0.65) as the source position is

changed from ro = 1.6 (near the outer edge) to r o _ 1.2 (near the middle of the shear

layer). An impulsive source in the shear layer (r_ < ro < rz) can produce large fluctuations

outside the shear layer; for example, when r_ = 1.0, r2 ffi 2.0 and ro ffi 1.5, the peak velocity

at r ffi 0.5 is about 1.2.

At larger values of time, the general wave-like character of the packet is unaltered,

although its amplitude is greater became of the exponential growth associated with the

instability of the base flow. Thus, relative to an observer moving with the group velocity,

the disturbance grows exponentially in time. But the disturbance measured at any fixed

station x eventually decays rapidly with time because the localized disturbance travels

away.

In physical terms, the impulsive excitation produces a wave packet (i.e., an

amplitude modulated wavetrain of finite extent) whose maximum amplitude Vma x (see

Figure 2) at a fixed radial location, at a fixed large time, and for a given base flow is a

function of the source location ro. The goal of the present receptivity analysis is to obtain
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Vmax(r o) and to see if the most receptive place, ro,ma x, is related to the "critical point"

associated with the most unstable wave of linear stability theory. One may note that the

model base flow, with rI ffi 1.0 and rz ,, 2.0, has such a point at r _ 1.33, which is towards

the inner uniform base flow. On the other hand, for rl ffi0.75 and r2 ffi 1.75, this "critical

point" is at r ffi 1.08.

The "receptivity" of the jet, Vmax(ro), as a function of the source location, is shown

in Figure 12. The location of the source is changed between the inner and the outer

uniform mean profiles and the magnitude of the maximum velocity, Vma x, is calculated at

various locations in the radial direction. Recall that v ffi v(x,r,t, ro) and Vmax is defined by

the maximum value of v as x ranges over its values in the interior of the packet at fixed

values of r, t and ro (see Figure 11). In other words, Vmax is a function of r, t and rd the

dependence on t is essentially exponential (therefore uninteresting) because of the intrinsic

instability of the base flow. The dependence on the source location, ro, is given for

parametric values of r in Figure 12. In addition, Vmax also depends on the base velocity

profile, hence the dependence on r1 and rz.

Figure 12 provides several interesting results about the sensitivity or receptivity of

the jet flow to disturbances that are generated at ro. First, as the source is moved away

from the inner flow toward the outer flow, the maximum disturbance velocity at a given

radial location first increases and then decreases. This means that there is an optimum

place of the source, ro,ma x, which yields the strongest response in the flow. It is

interesting to note that the curves are not symmetric about r ffi (G+rz)/2 and they do not

attain their maximum values there, which means that the most receptive place of the

source is not the middle of the axisymmetric shear layer. In fact, the strongest response is

obtained when the impulsive disturbance is placed closer to the high-speed side of the jet
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or nearer to the inner flow. For example, ro,ma x is about 1.09 when (r1, r2) = (0.75, 1.75)

and is about 1.35 when (rl, r3)= (1.0, 2.0). Note that ro, max = the "critical point"

associated with the most unstable wave of linear theory:. U(r = ro,ma x) = c(a = a m) where

c is the phase speed of the most amplified wave whose wavenumber is am. This simple

result is valid for all r1 and r_ and is consistent with the result of Balsa (1988), who found

that the mixing layer is most sensitive to perturbations which occur near the region at

which the phase speed and fluid speed are equal. Finally, the maximum velocity changes

fairly rapidly with ro, except in the vicinity of ro,ma x, which means that the perturbations

in the flow field are quite sensitive to the location of the excitation. For example, the

peak velocity at r ffi 1.6 and for (r1, r_) = (1.0, 2.0) changes from about 15 to about 3.0

(nearly doubles) as ro is changed from about 1.05 to about 1.35.

In the mixing layer, all unstable waves are convected with the flow at the same

phase speed c - U(y ffi 0) and the flow is very receptive to disturbances that are generated

near the centerline of the layer (Balsa, 1988). In the jet, the phase speed depends on the

wavenumber and the flow is very receptive to disturbances that are generated near the

"critical point" of the most unstable wave. Therefore, in order to elicit the strongest

response, the disturbance should be placed at ro,ma x, which is given by

U(ro,max) -- C(am) (4.2-I)

where ro,ma x is the location of the source which results in maximum perturbations at any

radial location r, and a m is the most amplified wavenumber. For the model base flow of

Figure 2, ro,ma x is closer to the high-speed side than to the low-speed side. Equation

(4.2-1) provides a simple criterion that is relevant to flow control.
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In summary, our current wave packet describes the response of a parallel jet flow

that is disturbed by an impulsive source at x -- 0, r = ro and t -- 0. The wave packet is the

long time solution of the linearized initial value problem and its amplitude depends on the

location ro of the perturbation. The long time solution describes not only the general

structure of wave packets, but also establishes the explicit connection between the

perturbations in the flow and the external disturbances which generate them. The

conclusion is a simple one: in order to generate maximum perturbations in the flow, the

disturbance should be placed near the "critical point" of the most unstable wave. In other

words, the jet flow is most sensitive to perturbations which occur near the region at which

the fluid speed and the phase speed of the most amplified wave are equal.
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ANALYSIS OF THE MIXING LAYER

In this chapter, the evolution of finite (but small) amplitude disturbances in mixing

layers is discussed using both the weakly nonlinear stability theory (Section 2.2) and the

(truncated) numerical solutions of the Navier-Stokes equations (Section 2.3). It is the

manner in which nonlinearity sets in, and the consequences of its presence, that this

analysis seeks to explore. Once a disturbance with some wavenumber and amplitude is

superimposed on the base flow, its amplitude grows exponentially in time until non-

linearities generate higher harmonics and wave Reynolds stresses that alter the base flow.

This causes the amplitude and frequency of the fundamental wave to go through some

dynamical adjustments as discussed previously. In the weakly nonlinear theory, these

adjustments are measured by the sign and the magnitude of the Landau constants (a t, a=,

etc.), and a finite amplitude steady state will be reached if a 1 is negative. The numerical

solution, on the other hand, may become steady or oscillatory depending on the wave-

number, initial amplitude of the disturbance and Reynolds number. In order to see the

importance of nonlinearities in the critical layer as the neutral wave is approached, and to

establish the range of validity of the weakly nonlinear theory, the two solutions are

compared for various Reynolds numbers, initial amplitudes and wavenumbers.

The basic objectives of this work are: (l) to understand the nonlinear evolution of

disturbances in mixing layers; and (2)to explore the range of validity of the weakly

nonlinear theory (Stuart, 1900; Watson, 1960; Schade, 1964; Maslowe, 1977; Herbert, 1983;

Huerre, 1980 and 1987). This theory is an asymptotic one valid for small amplitudes and

is based on a series expansion in the amplitude in which the leading order solution is that
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of the linearproblem. Oncea givenlinearlyunstable base flow is perturbed by a wave-

like disturbance, the disturbance grows (initially) according to linear theory (Drazin and

Reid, 1981) until self-interactions create a wave Reynolds stress which will distort the

mean flow and alter its stability characteristics.

A weakly nonlinear analysis of the incompressible, two-dimensional and temporally

evolving mixing layer consists of expanding the single disturbance in a Fourier series in the

axial variable, expanding each Fourier component in terms of the small amplitude A(t) and

seeking a Landau-type equation (see Eq. 2.l-ll) for the amplitude. The problem is

formulated analytically in Section 2.2. In order to see the physical essence of the Landau

equation, consider the nonlinear interactions in a flow that is perturbed by an O(A)

fundamental disturbance e iax. At O(A2), the fundamental interacts with itself to generate

the second harmonic e2iax and, with its complex conjugate, to generate the zeroth

0iax
harmonic e At O(A3), the second harmonic interacts with the complex conjugate of

the fundamental to reproduce the fundamental. But a far more important interaction,

which is invariably ignored in the literature for erroneous reasons, is the interaction of the

zeroth harmonic (the so-called mean flow distortion) with the fundamental. This latter

interaction also reproduces the fundamental and alters its growth rate. Another objective

of this dissertation is to clarify the role of this interaction in the nonlinear stability of free

shear flows. Briefly, the nonlinear interactions result in: (1) the generation and distortion

of higher harmonics; (2) the distortion of the fundamental; and (3) the distortion of the

iax .
base flow via the zeroth harmonic. Since the O(A) fundamental wave e ss reproduced

at O(A3), O(AS), O(Ar), etc., it is natural to expand the amplitude A(t) in the form

dA A3 A5
d-"i"= a° A + a1 + a,. + ...
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where the linear growth rate (ao), the first Landau constant (a 1) and the second Landau

constant (a,.) are time-independent but depend on the wavenumber of the disturbance and

on the Reynolds number. The initial amplitude A(0) of the disturbance is needed to solve

the above first-order nonlinear ordinary differential equation.

The basic steps of the numerical treatment of the mixing layer are discussed in

Section 2.3. There we recall that the various steps are: (1) expansion of a single disturbance

in a Fourier series in the axial variable; (2) truncation of the series at a given n, where n is

the order of the harmonic; and (3) solution of the resulting coupled nonlinear partial dif-

ferential equations for the Fourier coefficients. These depend on the transverse variable y

and time t, and a finite difference scheme is used to solve these equations at a given

Reynolds number, wavenumber and initial amplitude. Initially, only the fundamental wave

is nonzero and its mode shape and phase speed are obtained by solving (numerically) the

Orr-Sommerfeld equation. In the course of time, both the amplitude and the shape of the

fundamental change due to nonlinearities. In this work, n = 2, which means that the fun-

damental and the zeroth and second harmonics are kept and smaller scales of motion (third

and higher harmonics) are absent whereas George and Hellums (1972) considered n = 2, 3

and 4 in their work on finite amplitude disturbances in plane Poiseuille flow; Miura and

Sato (1978) used n = 1 in their work on the nonlinearly evolving inviscid shear layer.

The disturbance (if unstable) grows while being convected by the flow at the phase

speed c, which is somewhere between the maximum and the minimum values of the base

flow. For the hyperbolic-tangent family of base profiles, the disturbance propagates at

exactly the average velocity; for example, when the base flow is U(y) -- tanhy, all waves

travel at zero velocity. In the neighborhood of the critical layer, where U - c -_ 0 (the

critical layer is at y ,_ 0 for the hyperbolic-tangent profiles), viscous and nonlinear effects
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are important. Benney and Bergeron (1969) found the structure of a critical layer in which

nonlinearity dominates viscosity and the pattern of the streamlines in this layer resembles

the cat's eyes of Kelvin (Drazin and Reid, 1981, p. 141). Outside the critical layer region,

the leading order disturbance equation is the Rayleigh equation, and within the critical

layer, the leading order flow is the cat's eyes pattern. To understand the relative effects of

viscosity and nonlinearity on the instability wave, consider the nonlinear equation (2.2-1)

of the perturbation streamfunction, and let the size of the perturbation be A. Near the

critical layer, of thickness 6, [the base flow is U(y)= tanhy- y near y = 0, a/ax ~ 1,

a/ay ~ 1/5; Drazin and Reid, 1981, pp. 421-22] the viscous term -A/(64 Re), the

convection term -A/6 and the nonlinear term -A2/_ 3. A balance between the convection

and viscous terms determines the thickness of a linear viscous critical layer to be

6--Re -1/3 and a balance between the convection and nonlinear terms determines the

thickness of a nonlinear inviscid critical layer to be 6 = A 1/'. These length scales have

been similarly derived by Benney and Bergeron (1969) and by Robinson (1974) in their

work on nonlinear waves in parallel shear flows. An exceptionally important work on

nonlinear critical layers has recently been published by Goldstein and Leib (1988).

In order to establish the range of validity (in terms of amplitude and Reynolds

number) in which the weakly nonlinear theory is accurate, the numerical and the weakly

nonlinear solutions are compared with each other. Although they both contain only the

first few nonlinear interactions (as described previously in terms of Fourier modes), the

weakly nonlinear theory makes a further assumption in the form of the amplitude

expansion dA/dt = aoA + aiA3+ .... Putting it slightly differently and in more technical

terms, we emphasize that the weakly nonlinear theory assumes a priori that the critical

layer is viscous. On the other hand, the numerical approach makes no such assumption,
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and treats the critical layer as a balance between viscosity and nonlinearities. Such a

comparison will give an indication for the breakdown of the weakly nonlinear theory when

the amplitude is too large. This comparison is consistent in the sense that only the

fundamental, the second harmonic and the mean flow correction (the zeroth harmonic) are

kept in both approaches. Therefore, the two solutions should agree well with each other in

the limit of small amplitude and Reynolds number. At large amplitudes and higher

Reynolds numbers, the results will differ because, in the weakly nonlinear theory, the

equations are solved by a perturbation method for small amplitude and the effects of

nonlinearities enter in a hierarchial manner. The lowest order solution is the linear one to

which corrections are made in a successive fashion to account for nonlinearities. This

implies that to lowest order, the critical layer is a viscous one. On the other hand, in the

numerical solution, the critical layer is allowed to be fully viscous and nonlinear (within

the limits of the truncation after the second harmonic) because we are solving a system of

nonlinear equations.

In summary, the analysis in this chapter is concerned with the temporal interactions

between an instability mode and its harmonics in mixing layers with hyperbolic-tangent

base flows. The first and the second Landau constants are calculated for neutral and for

amplified waves, and the amplitude equation (5.2-1) is solved to O(A 3) (see Eq. 5.3-12) to

determine the amplitude of the fundamental wave under linear growth and nonlinear

saturation. In order to see how the importance of the nonlinearity changes as the neutral

wavenumber is approached, to establish the range of validity of the weakly nonlinear

theory of Stuart (1960) and Watson (1960), and to describe the evolution of very amplified

waves, a numerical solution is obtained and compared to the weakly nonlinear solution for

various Reynolds numbers and wavenumbers.
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Before discussing the nonlinear instability of the mixing layer, it is worth

mentioning some aspects of its linear instability (Betchov and Szewczyk, 1963; Michalke,

1964). The mixing layer is linearly unstable to small disturbances; when it is excited by an

oscillatory disturbance of suitable wavenumber, the disturbance extracts energy from the

mean flow so that it grows exponentially in time while being convected with the flow.

The instability of a given base flow depends on the disturbance wavenumber and on the

Reynolds number (based on the momentum thickness). Our typical base flow and its

viscous instability characteristics (based on numerical solution of the Orr-Sommeffeld

equation) are shown in Figure 13. The linear growth rate ao as a function of wavenumber

c_ is shown for different values of the Reynolds number Re and the phase speed of the

disturbance c is found to be 0, which means that the critical layer is in the vicinity of

y ffi 0. Note that the base flow has an inflection point at y ffi0 and that the waves are

nondispersive (i.e., all waves travel at the same speed).

These linear results, which are in agreement with the numerically obtained results

of Betchov and Szewczyk (1963), show that viscosity is stabilizing and that the instability

characteristics of the viscous problem at Re ffi 200 and the inviscid one are nearly the

same. For example, the maximum growth rates at Reynolds numbers of oo, 100 and 50 are

0.190, 0.175 and 0.163, respectively. Viscosity reduces the range of unstable wavenumbers

by suppressing the growth of short waves and, therefore, leads to a lower neutral point.

For example, the neutral wavenumbers at Reynolds numbers of 00, 200, 100 and 50 are

1.0, 0.969, 0.943 and 0.895, respectively. Viscosity, or molecular diffusion of momentum,

tends to smooth out the velocity differences of a disturbance and, in a mechanical sense,

dissipates the energy of any disturbance and thereby stabilizes the free shear layer.
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a function of wavenumber for different values of the Reynolds number Re.
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5.1 The First Landau Constant

The mixing layer is unstable; once it is perturbed, the fundamental disturbance

grows exponentially in time until it interacts with itself to create a wave Reynolds stress

which excites both the zeroth and second harmonics. Once these two harmonics are in the

flow, they further interact with the fundamental to modify its exponential growth and such

modification is measured by the sign and the magnitude of the first Landau constant a r

To put it in yet a simpler way, the second term on the right-hand side of the Landau

equation (dA/dt - aoA + alA3 + ...) is due to the interactions between the fundamental and

both the zeroth and second harmonics and may moderate or accelerate the exponential

growth of the disturbance according to the sign of ar

The generation of the zeroth harmonic causes the mean flow to change in the

course of time and, in the spirit of the weakly nonlinear theory (see Eq. 2.2-3), the mean

flow is

u(y,t) = U(y) + A2(t) _ol(Y) + "'" (5.1-1)

where U(y) is the base flow, ¢'ot(Y) is a shape function associated with the distortion of the

mean flow, and the prime denotes d/dy. The contributions to the first Landau constant,

therefore, come from two nonlinear effects: the interaction of the fundamental with the

second harmonic, and the interaction of the fundamental with the zeroth harmonic. The

latter is called the mean flow distortion effect (MFD). Both of these interactions are of

o(A3).

There has been a controversy in the literature concerning the effect of the mean

flow distortion (MFD) on the growth of the disturbance. Schade (1964) and Maslowe

(1977) neglected the mean flow distortion contribution to al by setting the zeroth harmonic
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to zero and found the contribution arising from the interaction between the fundamental

and the second harmonic to be stabilizing (a I was found to be negative for neutral waves).

Schade took a hyperbolic-tangent base profile and (by obtaining closed-form solutions of

the equations governing the fundamental mode, and the second harmonic) formally

calculated aI in the limit as Re--.oo, while Masiowe calculated a t at low values of Re

numerically by using a second-order finite difference scheme. Huerre (1980) concluded

that the mean flow distortion is destabilizing but he later (1987) corrected his original work

and concluded that the mean flow distortion contribution to the first Landau constant

dominates the contribution coming from the interaction of the fundamental with the

second harmonic and it is strongly stabilizing. Huerre used the method of multiple scales

to obtain a I for neutral waves in the limit as Re-,oo and when the critical layer is viscous.

The first Landau constant (a 1) of the weakly nonlinear stability theory is calculated

with and without the presence of the mean flow distortion (MFD). It is found to be

negative, indicating that nonlinearities are stabilizing for the mixing layer. The principal

contribution to the first Landau constant comes from the MFD and no_.t.tfrom the

interaction of the fundamental with the second harmonic. An unstable wave will,

therefore, saturate into a finite amplitude steady state regardless of the magnitude of the

small initial amplitude. The equilibrium amplitude Ae (A_ = -ao/a 1) depends only on the

wavenumber and the Reynolds number. At this point in time, the kinetic energy of the

disturbance is constant and (in the inviscid limit) the total energy supplied per period from

the basic flow to the perturbation flow via the wave Reynolds stresses is zero (in the

viscous case, the small viscous dissipation of kinetic energy balances exactly the small

energy input into the perturbations from the mean flow via Reynolds stresses; see Drazin

and Reid, 1981, p. 425).
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The first Landau constant (at the neutral wavenumber) is given, for parametric

values of Reynolds number, is shown in Table I. There is about a 4% difference between

the present results and those obtained by Masiowe (1977). We believe the present investi-

gation (which employs a fourth order scheme; Ay ffi 0.02; boundary conditions are enforced

at y ffi_-4.0) is more accurate than Maslowe's (second order scheme with Ay ffi 0.05;

boundary conditions are enforced at y = T3.0). It can be seen from the fourth column that

the absolute value of the Landau constant first increases then decreases slightly as the

Reynolds number is increased and that the published value of Schade (1964) is approached

as Re-, co. The inclusion of the mean flow distortion is very stabilizing, especially at

higher Reynolds numbers. In Figure 14, the behavior of a I as a function of Reynolds

number at exactly the neutral points is shown. In the limit of large Reynolds numbers, the

dominant contribution to the Landau constant arises from the mean flow distortion. While

the harmonic contribution is O(l), the mean flow distortion contribution is O(Ret/a). This

is consistent with the analysis of Huerre (1987). In particular, the two predictions are:

8.18 Re1/3 ; Huerre (1987)
(Re -. co)

7.80 Re1/a ; Present Investigation

(Re > 20,000)

(5.1-2)

The behavior of a t as a function of wavenumber for parametric values of shear

layer Reynolds numbers is shown in Figures 15 and 16. At large Reynolds numbers, a t

changes extremely rapidly with wavenumber in the vicinity of the neutral point. Also, in

a relative sense, nonlinear effects are more important for near-neutral waves (say, a --- 1.0)

than for off-neutral waves (say, a --. 0.8) because of the largeness of the Landau constant

computed with MFD. This is due to a competition between a "growth critical layer"

[which can be obtained from Eq. 2.2-1 by balancing the terms 0(V_b)/0t and U 0(_7_b)/0x
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Figure 14. First Landau constant as a function of Reynolds number for neutral waves
with and without mean flow distortion (MFD). (Log-Log scale; base 10.)

u(y) = tanhy. Dashed lines are Huerre's (1987) results as Re -. oo.
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distortion. U(y) = 0.5 (1 + tanhy).
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with eachother and by noting that, near y ffi 0, U(y) ~ y ~ 6 where 6 is the critical layer

thickness; Robinson, 1974] of O(a o) which is important for amplified waves and a viscous

critical layer of O(Re -x/a) which is important for neutral waves. In other words, in the

weakly nonlinear theory, the (inviscid) terms in the momentum equation dominate for

amplified waves but the effects of viscosity become more important as the neutral point is

approached. Physically, viscosity diffuses any variations in the vorticity and the effect of

the viscosity in altering the nonlinear instability of the flow is negligible to first order

provided that ao >> Re -1/_ (Stuart, 1960; Robinson, 1974). This condition, which may also

be obtained from a direct comparison of the terms 0(V2_b)/0t and V4_p/Re in Eq. 2.2-1

after noting that o/at- ao, means that the time scale for inviscid changes (l/ao; obtained

from balancing 0/0t VZ_b with U(a/0x)V2_b in the growth critical layer) must be much

smaller than the time scale for viscous diffusion in order to neglect the effects of viscosity.

There are many conclusions which can be drawn from Figures 15 and 16. First, at

any (unstable) wavenumber considered, the value of the first Landau constant is much

larger in the presence of the mean flow distortion. This means that it is the changes in the

mean flow induced by the Reynolds stresses, and not the birth of the second harmonic,

that contribute the most to slowing the growth of the fundamental. Second, at large

Reynolds numbers, the maximum value of the first Landau constant (-almax) is attained

just before the neutral wave; for example, at Re = 5000 (no MFD), the neutral wave is

a n = 0.998, but -almax is at area x = 0.965. To the right of amax, the Landau constant is

dominated by a viscous critical layer while to the left, aI is dominated by a growth critical

layer. This argument is similar to the classical boundary layer concept in the sense that the

Landau constant behaves almost inviscidly until forced to adjust to viscous effects just

before the neutral wave, at a distance that depends on the magnitude of the Reynolds
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number. Finally, at low Reynolds numbers, the Landau constant "feels _ viscous effects

throughout the entire wavenumber range and behaves in a monotonic fashion. In other

words, the sharp peak or boundary layer is completely diffused.

Generally, the maximum value of the Landau constant (-almax) is reached just

before the neutral wave. The behavior of -almax as a function of Reynolds numbers is

shown in Figure 17. It can be seen that the absolute value of a_max increases with

increasing Reynolds number and that the mean flow distortion is very stabilizing. The

maximum value of the Landau constant changes from O(Re :/4) when the mean flow

distortion is absent to O(Re) when the mean flow distortion is included. Note that

nonlinear effects are more important for a near-neutral wave than for either precisely

neutral or moderately amplified waves.

The strongly stabilizing effect of the mean flow distortion can be explained by

following the shape of the distorted mean velocity profile in the vicinity of the critical

layer during the course of time. At t = 0, the mean velocity is U(y) - this is the base

flow. For t > 0, the mean flow remains _(y,t) ffi U(y) when the mean flow distortion is

neglected and becomes less steep when the mean flow distortion is included [see Eq.

(5.1-1)]. In other words, the inclusion of the mean flow distortion results in a more

diffused (less steep) and, therefore, a more stable flow as time goes on. Basically, the

mean velocity gradient will be reduced near the middle of the shear layer during the

growing period of the amplitude as soon as the zeroth harmonic is born. The fundamental

will then be convected into more and more stable profiles until a steady-state (i.e.,

saturation where A = Ae) is reached.

Figure 18 shows how the mean velocity profile u(y,t) is modified with time. The

initial amplitude A(t ffi 0) of the fundamental disturbance (with a = 0.8) is 0.005 and (at
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Re = 5000) the linear growth rate and the first Landau constant are 0.107 and -11.2,

respectively. Although the overall pattern of the mean flow is not drastically changed, the

gradient (a_/ay) is seen to be sufficiently modified in the vicinity of the center of the

shear layer. As time goes on, the mean velocity increases below y = 0, decreases above

y = 0, and remains the same at y = 0. For example, the mean velocities u(y = -0.6, t = t,)

at t. = 0, 30 and 50 are -0.537, -0.523 and -0.515, respectively. It may be noted that the

mean flow remains nearly the same far above and below the critical point (say, for

lyl > 1.5),and that the mean flow near the middle of the shear layer keeps changing until

a new steady flow is established. In this case, an equilibrium state is reached when the

nondimensional time t = 70 and the amplitude, then, is Ae = 0.098.

In summary, the results of this section are: (1) the first Landau constant is negative

indicating that nonlinearities are stabilizing so that the exponential growth rate of the

fundamental disturbance will be reduced in time until a steady state is established; (2) the

dominant contribution to the first Landau constant comes from mean flow distortion and

not from the interaction between the fundamental and the second harmonic; (3) the mean

flow distortion is very stabilizing because the disturbance is continually being convected

into flow regions with smaller maximum vorticity; and (4)in a relative sense, nonlinear

effects are most significant for very slightly amplified waves because of the competition

between a linear inviscid "growth critical layer" (which dominates for amplified waves) and

a linear viscous critical layer (which dominates in the vicinity of the neutral point at high

Reynolds numbers).

5.2 The Second Landau Constant

Linear theory is ordinarily concerned only with very small-amplitude disturbances,

so nonlinear effects in this case are typically of minor significance. The weakly nonlinear
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theory, however, is concerned with the way cumulative nonlinear effects modify the

instability of the flow. In an unstable flow, with increasing time, higher harmonics

develop, the mean flow continues to change, and the fundamental disturbance keeps

adjusting its shape and growth rate. The precise way in which this happens depends on

the level of viscosity, and the amplitude and length scale of the disturbance. While the

first Landau constant modifies the growth rate of the nonlinear disturbance at O(A2), the

second Landau constant (az) modifies the growth at O(A4). We may think of (A -1 dA/dt)

as the instantaneous growth rate which obeys

1 dA A2 A4
A dt = a° + al + a2 + ... (5.2-1)

In other words, the second Landau constant gives a further correction to the

amplitude equation due to nonlinear effects. The first Landau constant provides a measure

of the deviation from linear growth rate due to: (l)the interaction between the

fundamental and the second harmonic; and (2)the interaction between the fundamental

and the zeroth harmonic or the mean flow. The second Landau constant provides a

measure of the further correction to the growth rate due to: (1) the interaction between the

second harmonic and the third harmonic; (2) the interaction between the second harmonic

and the reproduction (at order A 3) of the fundamental; (3)the interaction between the

fundamental and the square (at order A 4) of the second harmonic; (4)the interaction

between the fundamental and the mean flow distortion (at order A4); and (5)the

interaction between the primary mean flow distortion and the reproduced (at order A 3)

fundamental.

The second Landau constant is calculated for neutral and near-neutral waves with

and without the mean flow distortion. In simple terms, the absence of the mean flow
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distortion means that the zeroth harmonic (n = 0) is set to zero artificially so that the mean

flow remains the same in the course of time.

The behavior of a,. as a function of wavenumber is shown in Figures 19 and 20. It

can be seen that most of the contribution to the second Landau constant arises from mean

flow changes and not from harmonic interactions because the values of az with MFD

become very large. For neutral and very slightly amplified waves, a2 is positive, indicating

that higher order interactions are destabilizing, but for certain wavenumbers (say, c_ = 0.87;

with MFD) a, is negative. In general, a: may be positive or negative depending on the

wavenumber, but for neutral and very near neutral waves, a2 is always positive.

The behavior of a2 as a function of the Reynolds number at exactly the neutral

wavenumber is shown in Figure 21. Without the mean flow distortion, a 2 is found to be

equal to approximately 4.13 Re in the limit of large Reynolds numbers (Re > 2000). The

mean flow distortion is very destabilizing in the sense that it changes the order of the

positive a2 from Re to Re'.

The weakly nonlinear theory is an asymptotic theory valid for small amplitudes and

its convergence depends on the magnitudes of the Landau constants and on the amplitude

A(t) of the fundamental wave. For exactly neutral waves (ao = 0) and at high Reynolds

numbers, the first Landau constant a I ~ Re 1/_ and the second Landau constant a2 ~ Re 2

which means that (since dA/dt = aoA + axA s + azA5 + ...) the weakly nonlinear theory is

meaningful provided that

ReS/3 A 2 << 1 (5.2-2)

and this implies that the theory breaks down (cannot describe the evolution of finite

amplitude disturbances) in the limit as Re_. In this case, the critical layer is dominated

by nonlinearities and a nonlinear critical layer theory is needed (Goldstein and Leib, 1988).
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The modified mean velocity profile _(y,t) is composed of the initial mean velocity

U(y) and mean flow corrections arising from nonlinearities and, in the spirit of the weakly

nonlinear theory, is given by

u(y,t) = U(y) + A2(t) _ol(Y) + A4(t) _o2(Y) + "'" (5.2-3)

The physics embedded in this equation is the following. A linear (very small amplitude)

disturbance does not alter the mean flow until it has grown to an appreciable size. Then,

while the primary Reynolds stress tends to diffuse the flow because _ol is positive below

y = 0 and negative above y = 0, higher order interactions tend to steepen the flow since

_bo_is negative just below y -- 0 and positive just above y = 0. This is why the mean flow

distortion is stabilizing at O(A 2) and destabilizing at O(A4). The fact that very significant

changes in the mean flow take place in the course of time render the weakly nonlinear

theory invalid in describing the evolution of finite amplitude disturbances at large

Reynolds numbers. Essentially, the amplitude is constructed by inequality (5.2-3). Figure

22 shows the mode shapes ¢'o1(Y) and ffoz(Y) as functions of y (the prime denotes d/dy) and

it can be seen that nonlinearities distort the mean flow near the critical point (y -- 0) but

do not significantly broaden the mixing layer (in time). Note that the higher order

distortions are concentrated closer and closer to the critical layer.

The frequency of the disturbance at finite amplitudes is governed by (see F_zl.

2.1-11)

rift(t) _- co° + 0:1 A2(t ) + w2 A4(t) + ... (5.2-4)dt

This means that, in general, nonlinear finite amplitude interactions modify the frequency

of the nonlinear disturbance in the course of time. But the calculated complex Landau
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constants(An = an - io:n, n = 1,2) are found to be real which shows that nonlinearities do

not modify the frequency when the hyperbolic-tangent family of mean velocity profiles is

employed. This is due to the mean vorticity symmetry about y = 0; it is clearly a special

case. It is well known that the frequency of a nonlinear oscillator depends on its

amplitude.

In summary, the results of this section are: (1) the second Landau constant may be

positive or negative depending on the wavenumber a, but for exactly neutral or very

slightly amplified waves it is positive, which means that higher order nonlinear interactions

are destabilizing; (2) the mean flow distortion generated by nonlinear interactions at order

A 4 tends to increase the maximum vorticity in the mixing layer by increasing the mean

velocity gradient near the middle of the layer in the course of time and, therefore, is

destabilizing; (3) most of the contribution to the second Landau constant arises from mean

flow changes and not from the interaction of higher harmonics. Nonlinearities distort the

mean flow near the middle of the shear layer (note that the critical and inflection points

coincide and they both are at y = 0); and (4) the weakly nonlinear theory breaks down in

describing the evolution of finite amplitude waves at large Reynolds numbers.

5.3 Numerical Versus Weakly Nonlinear Solutions

In comparing the solutions obtained from the numerical calculations with those from

the weakly nonlinear stability theory, only the fundamental, the second harmonic, and the

mean flow correction are retained in both. However, the results are, by no means,

identical becausse the numerical solution treats the critical layer differently from the weakly

nonlinear theory. In the former, the critical layer is fully viscous and nonlinear (within the

assumptions of the truncation after the second harmonic). While in the weakly nonlinear

theory, the effects of nonlinearities enter in a hierarchical manner the critical layer is a
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viscous one. Note that the O(A a) correction to the shape of the fundamental in the weakly

nonlinear theory is also retained here because this change is accounted for in the numerical

solution. Furthermore, the comparison is made for the hyperbolic-tangent family of mean

velocity profiles for which the phase velocity of the disturbance and the imaginary part of

the first Landau constant are zero.

5.3.1 The Numerical Solution

The details of the analysis are given in Section 2.3. The perturbation

streamfunction, axial velocity (u = o'_b/0y), transverse veloctiy (v = -o_/0x), and vorticity

are, respectively,

_x,y,t) = _o(Y,t) + [_l(y,t) e iax + _2(y,t) e2iax + cc] (5.3-1)

u(x,y,t) = ¢oy(y,t) + [¢,ly(y,t) e iax + ¢,zy(y,t)e 2iax + cc] (5.3-2)

v(x,y,t) = - Iic_l(y,t) e iax + 2iad,,(y,t) e2iax + cc] (5.3-3)

fl(x,y,t) = %(y,t) + [oJl(y,t) e ic_x + w2(y,t) e2iax + ec I (5.3-4)

where cc stands for the complex conjugate of the preceding terms in an equation. The

system of nonlinear partial differential equations satisfied by _o, ffa and _,. is given by

(2.3-2) to (2.3-4). Clearly, ¢o, Cx, _2 are the first three Fourier coefficients in the

expansion of the perturbation streamfunction.

The initial given parallel mean velocity profile U(y) is modified by nonlinearities so

that the instantaneous mean velocity profile (averaged over a wavelength) is given by

u(y,t) = U(y) + q_oy(y,t) (5.3-5)
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The amplitude of the fundamental is defined by

A(t) ffi I l(o,t)l (5.3-6)

so that it is essentially the magnitude of the fundamental component of the transverse

velocity divided by the wavenumber at y = 0.

5.3.2 The Weakly Nonlinear Solution

The corresponding physical quantities obtained from the weakly nonlinear theory

are given in Section 2.2. We write

_x,y,t) = AS(t) _ol(Y) + ([A(t) _ao(Y) + Aa(t) #xl(Y)] eiax

+ A_(t) ¢_o(Y) e2ic_x + co}

u(x,y,t) = AS(t) _ol(Y) + ([A(t) _lo(Y) + A3(t) _lx(Y)] eiax

+ AS(t) _o(Y) e2iax + co}

v(x,y,t) ffi -{i_[A(t) #lo(Y) + A_(t) #xx(Y)l eiax

2ic_x
+ 2ia AZ(t) #zo(Y) e + cc)

iotx

fl(x,y,t) = -A_(t) _ol(Y) - (A(t) [¢1o(Y) - a2 _lo(Y)] e

i_xM

+ AS(t) [_11(Y) - a2 _11(Y)1 e

÷ AZ(t) [_o(Y) - 4_ _zo(Y)l e2iax ÷ cc}

(5.3-7)

(5.3-8)

(5.3-9)

(5.3-10)

and

u(y,t) ffi U(y) + A'(t) Cox(Y) + "'" (5.3-11)

The solution of the amplitude equation (5.2-1) to O(A a) is
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A2(t) A2(0) e2ao tffi (5.3-12)

al _e2ao t)1+ --A2(0)(I
ao

The mean value of the vorticity is

t-l(x,y,t) ffi -U'(y) + fl(x,y,t) (5.3-13)

Our principal objective now is to obtain the time evolution of the flow field by

solving the previous equations (i.e., the numerical approach and the weakly nonlinear

theory) and comparing these results to gain additional insights into the saturation of the

fundamental and into the behavior of the weakly nonlinear theory. In order to do this, the

governing equations are solved at given values of wavenumber, Reynolds number and

initial amplitude A(0). The results are presented in the following two forms:

. x is specified (0 _<x _<2_r/_,).

y is specified.

A, u, v and fi are plotted as functions of time.

, t is specified.

Lines of constant total vorticity (/'l(x,y,t) = constant) are plotted in the x-y plane for

0 _<x _<4_r/a and -1.6 _<y _< 1.6.

5.4 Saturation and Vorticity Roll-Up

There are many general features of the weakly nonlinear theory and the numerical

solutions. First, both show the validity of linear theory for short initial times at small

amplitudes. Initially, the fundamental wave grows according to linear theory until near-
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neutral nonlinearity sets in relatively slowly for near-neutral waves and more rapidly for

very amplified waves. Second, while the weakly nonlinear solution always yields a steady

saturated state, the numerical solution may evolve into a quasi-steady (oscillatory) state

depending on the amplitude of the initial disturbance, Reynolds number and wavenumber.

For example, at large initial amplitudes, the flow will evolve into an oscillatory state

characterized by an alternating energy exchange between the mean flow and the

perturbation field. The mean velocity gradient is reduced while the disturbance is growing

and is increased during the decay. The peak saturation amplitude is nearly independent of

the initial excitation amplitude. Third, both solutions show that most of the contribution

to the nonlinear behavior arises from changes in the mean flow and not from higher

harmonics although the second harmonic is moderately important. Finally, the agreement

between the two calculations is better at low and moderate Reynolds numbers. The

disagreement, which occurs at either large Reynolds numbers or at large amplitudes, seems

to have its origin in the fact that the weakly nonlinear theory, which is based on a viscous

critical layer, predicts too much change in the mean flow. At low Reynolds numbers, the

agreement is excellent except for very amplified waves. At large Reynolds numbers, the

agreement is good except for very nearly neutral and very amplified waves.

The amplitude of the fundamental disturbance as a function of time for two

unstable waves of different wavenumbers in a tanh shear layer is shown in Figures 23, 24

and 25. The Reynolds numbers in these figures are 500, 2000 and 5000 respectively, and

the initial amplitude is 0.005. For nondimensional times up to 10 to 20, depending on the

wave and Reynolds numbers, the exponential growth of the disturbance is predicted very

well by linear stability theory (dashed line). At these times, the amplitude is about 0.06

for the more unstable disturbance (a = 0.7; Re = 500 and 2000) and is about 0.01 for the
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near-neutral disturbance (a = 0.9). For larger values of time, nonlinear effects set in very

quickly at large amplitudes and more slowly at small amplitudes. The saturation amplitude

predicted by the weakly nonlinear theory is slightly higher than the average of the

oscillations predicted by the numerical simulation. The physical interpretation of these

oscillations is given by Browand and Ho (1983). It should be noted that the weakly

nonlinear theory cannot predict the oscillatory energy exchange between the modes and the

mean flow because the Landau constants are time-independent [see (5.3-12)]. The

agreement between the numerical and the weakly nonlinear solutions gets better as the

neutral wavenumber is approached, as expected from theoretical considerations (Stuart,

1960). It may be noted that the agreement between the two solutions is also better at low

and moderate Reynolds numbers.

In Figure 26, the amplitude as a function of time is shown for four unstable waves

(a = 0.70, 0.90, 0.95 and 0.98; the neutral wave is a n = 0.999). The initial amplitude is

0.002 and the Reynolds number is 5000. There are many conclusions which can be drawn

from this figure. First, both the numerical and the weakly nonlinear solutions show the

validity of linear theory for short initial times (say, up to t = 20). Second, the agreement

between the two solutions improves as the neutral point is approached (note that the

amplitude of the oscillations of the numerical solution diminishes as the neutral

wavenumber is approached). Third, for moderately amplified waves (a = 0.7, say) the

amplitude oscillations of the numerical solution are large (say, the amplitude varies between

A = 0.06 and A = 0.20). The temporal calculations of Miura and Sato (1978) show the

same trend. Physically the amplitude oscillation is due to the temporal variations of the

mean velocity profile (the mean velocity gradient at y = 0 is reduced during the period in

which the amplitude is growing, while it steepens during the other half of the cycle).



124

5.0 -

Numerical

Weakly n0nlinear

0
v

v

.J
0.90

0.95

0.98 •

O.

Figure 26.

0

I I I I I
20 40 60 80 I00

time, t

Amplitude of the fundamental as a function of time for four unstable waves.
U(y) = tanhy. Re = 5000. A(0) = 0.002.



125

Finally, at very nearly neutral waves (say, a = 0.98), the amplitude predicted by the

weakly nonlinear theory is slightly lower than that predicted by the numerical calculations.

In Figures 27 and 28, the amplitude A(t), the perturbation axial velocity

[u(x,y,t) = _b/ay], the perturbation transverse velocity [v(x,y,t)=-_b/ax] and the instan-

taneous mean velocity [fi(y,t) ffi U(y) + AZ(t) d_(Y)/dy] in the weakly nonlinear theory and

u(y,t) = U(y)+ _boy(y,t) in the numerical solution] are plotted as functions of time for a

moderately unstable wave (a ffi0.7; Figure 27) and for a near-neutral wave (a = 0.9; Figure

28) at an arbitrarily but representative point (i.e., x and y are fixed). According to the

weakly nonlinear theory, the mean flow decreases to yield saturation and according to the

numerical solution, the mean flow initially decreases then oscillates to yield an oscillatory

field. The mean flow starts decreasing at a nondimensional time of about 15 when the

amplitude is about 0.03. After this time, nonlinearities set in quickly but the mean velocity

is reduced much more in the weakly nonlinear calculation. For example, the predicted

mean velocities in the numerical and the weakly nonlinear calculations at time equal to 35

[(i.e., u(0.16,35)] are 0.130 and 0.063 respectively. At this time, the predicted amplitude in

both calculations is about 0.20. Although the amplitude A(t) and the perturbation velo-

cities (u and v) agree well with each other (up to t = 35, say) the modified mean flow is

different in the two solutions. The weakly nonlinear theory exaggerates the distortion of

the mean flow but as the neutral wavenumber is approached, the agreement gets much

better. In Figure 28, the same physical quantities at the same transverse location above the

center of the shear layer are plotted as functions of time. The wave is nearly neutral with

wavenumber of 0.9 and the Reynolds number is 500. The agreement between the two

calculations is almost perfect in this case because the amplitude is small, which results in

slow changes in the mean velocity and, therefore, the slow setting in of nonlinearities.
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Largenonlinearitiesresult in a strong interaction between the mean flow distortion

and the fundamental mode. In Figure 29, the amplitude of the fundamental, as a function

of time, for nearly the most amplified wave in a tanh shear layer is shown. The Reynolds

number is 1000 and the linear growth rate is 0.186. At an initial amplitude of 0.05, the

disturbance grows according to linear theory up to a nondimensional time of about 7 and

then attains a maximum amplitude of 0.6 (note that the velocity ratio across the shear layer

is two) at time equal to 2i3. After this time, it oscillates about an amplitude of 0.4 with a

period equal to about 32. At an initial amplitude of 0.01, the behavior is very similar

except that the action of nonlinearities is delayed. The lack of dependence of the peak

saturation amplitude on the initial excitation amplitude has also been observed

experimentally by Freymuth (1966). The numerical temporal calculations of Metcalfe and

co-workers (1987) show the same trend. In addition, the average value of the oscillations

is also insensitive to the initial amplitude; the oscillatory solution represents the locking

onto a nonlinear limit cycle.

Shear flows characterized by inflectional profiles are highly unstable so that small

perturbations grow exponentially to large fluctuations in relatively short times (in this

work, the flow is assumed to be spatially periodic and evolves in time). The primary

instability of free shear flows is the Kelvin-Helmholtz instability mechanism (discussed in

Batchelor, 1967, p. 516; Drazin and Reid, 1981) which applies, in general, to inviscid flows

possessing a vorticity minimum. Through this mechanism, beyond the region of

exponential growth, instability waves evolve into a periodic array of concentrated spanwise

vortices connected by thin vorticity layers or braids. This pattern of vorticity is known as

"Kelvin cat's eyes". Basically, the roll-up of the shear layer is due to the accumulation of

vorticity at certain spatial regions.



129

0.6

0.5

0.4

v

_ 03
4-_

(D
E
r_

-C_
r-

q-

t- 0.2

0

,r-

D..E 0.1

I
1
I
I
t
/

/

/

/

r_
/ \

I

I

1

I

I

1

I
I
I

\

r_
/

/

/
/

I
I

\
\

\

\
\

!

A(0) - 005

A(0) = 0.01

End of exponential growth

0.0

0

I I I I I
20 40 60 80 100

time, t

Figure 29. Amplitude of the fundamental as a function of time for two initial
amplitudes. U(y) = tanhy. Re = 1000. a = 0.5. The linear growth rate is
0.186.



130

In Figure 30, the contours of constant total vorticity, as calculated from the weakly

nonlinear theory, are shown for two different times. The evolving disturbance has a

wavenumber equal to 0.6 and is superimposed on the mean velocity U(y) = 0.5 tanhy. The

Reynolds number is 500 and the initial amplitude is 0.01. The linear growth rate for this

wave is 0.082 and the maximum amplitudes obtained from the weakly nonlinear theory and

the numerical simulation are 0.182 and 0.188 respectively. In the upper picture, we see the

oscillatory pattern in the vortex contours, as expected from linear stability theory. Note

that the contours are increasingly distorted as the "critical" layer at y = 0 is approached.

This remark suggests that the most significant perturbations occur near the "critical" layer

even when the instability wave is quite unstable. Because of viscosity, the vorticity

contours can actually close on themselves and form small islands. In the bottom picture,

we show how the contours begin to roll-up. Near the critical layer, these contours

"overturn" and start to form the cat's eyes (which are nicely shown in Figure 31). The

weakly nonlinear theory becomes quite inaccurate for the vorticity (which is the second

derivative of streamfunction) at times larger than about 25. Clearly, however, the weakly

nonlinear theory can describe the initial stages of the nonlinear roll-up of vorticity. In

Figure 31, the vorticity contours from the numerical calculations are shown for large times.

For small times, the contours are very similar to those of the weakly nonlinear theory

shown in Figure 30. As time is increased, the roll-up process continues in an orderly

manner. At time equal to 30, the amplitude and the minimum vorticity are 0.102 and

-0.59 respectively, while they are 0.187 and -0.65 at time equal to 50. It is obvious that

the roll-up of vorticity is a typical nonlinear effect.

The numerically calculated vorticity contours are similar to those obtained by

Corcos and Sherman (1984) and by Metcalfe and co-workers (1987). It is worth noting that
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the present calculation is not an exact solution of the Navier-Stokes equations since short

scales of motion, namely the third and higher harmonics, are not included.

In summary, the principal results of this section are: (I) at small amplitudes and at

moderate Reynolds numbers, the weakly nonlinear theory describes well the saturation of

the fundamental, the distortion of the mean flow and the initial stages of vorticity roll-up;

(2) the weakly nonlinear theory breaks down at either large amplitudes or large Reynolds

numbers because in these two cases the theory predicts too much distortion of the mean

flow; (3)at large amplitudes, the numerical solution predicts flow oscillations due to a

periodic energy exchange between the fundamental and the mean flow, with the second

harmonic playing a less important role; and (4)the numerical solution, which is an

approximate one, describes the roll-up of the shear layer reasonably well.
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NONLINEARITIES IN HEATED SUBSONIC JETS

The central issues surrounding this part of the work are the relative importance of

the compressibility and heating of the jet in the subsequent evolution of weak nonlinear

disturbances. Thus, the Landau constants will not only depend on the Reynolds number

and axial wavenumber, but also on the jet temperature, Mach number and disturbance

azimuthal mode number. The wave Reynolds stresses, which now include density

fluctuations as well, distort the mean velocity and temperature profiles of the jet and,

therefore, alter its stability characteristics. In heated compressible flows, the additional

physical process involved is that of the reversible work of compression which contributes,

along with energy exchange between the mean and perturbation flows via the Reynolds

stress and the viscous dissipation of kinetic energy, to the rate of change of the kinetic

energy of the perturbation flow in the mechanical energy balance. In the following

analysis, it is apparent that nonlinearities are responsible for slowing the exponential

amplification of the disturbance with time, and that compressible and heated jets are more

stable than incompressible cold jets. In the numerical calculations, the momentum

thickness (0,) and the specific gas constant (_) are arbitrarily taken to be 0.2 and 1.4

respectively.

To repeat, the basic objectives of this work are: (l)to understand the nonlinear

evolution of disturbances in round jets; (2)to explore the effect of compressibility

(increasing the Mach number M; 0 _<M < 1.0) on the weakly nonlinear evolution of

disturbances in round jets; (3)to understand the effect of heating (increasing the jet

* T*temperature ratio T ; > l); (4) to investigate the effect of the azimuthal mode number
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(,8= 0,1); and (5)to explore the applicability of the weakly nonlinear theory to heated

subsonic jets where both quadratic and cubic nonlinearities exist.

There are several distinctive features of the heated subsonic round jet. First, the

waves are dispersive so that waves with different wavenumbers are convected with the

flow at different speeds. This is because the symmetry of the base vorticity about the

Mcritical" point is broken and, as a result, the frequency of oscillation, d'//dt, will depend

on the amplitude of the disturbance. Because of heating, the generalized inflection point is

no longer at the inflection point determined by the base velocity profile and the phase

speed of a (nonsingular) neutral mode is no longer given by the value of U where the

derivative of [r U'/(fl 2 + a_r2)] vanishes (prime denotes d/dr) (Batchelor and Gill, 1962).

In the present work, we shall consider only subsonic flows and will look for modes

which move at subsonic speeds with respect to the ambient, as well as with respect to the

fluid on the jet centerline. These modes are regular in the sense that the perturbation

pressure and the radial component of the velocity are finite, although the density and

temperature become infinite (because we have neglected heat conduction; we kept the

viscous diffusion term in Eq. (2.1-5) in order to treat neutral waves) at the critical point

when the wave is exactly neutral. The axial component of the velocity is finite for the

axially symmetric mode (_ = 0) and is infinite for all other modes. When the mode is

supersonic, singular neutral modes are also possible; we shall not look at these because our

flow is assumed to be subsonic.

Second, cubic nonlinearities exist when the jet flow is either subsonic or hot, which

ir_x
means that the O(A) fundamental disturbance e interacts with itself (say,

iax iax -iax
e e e , as exemplified by the term puv), to reproduce itself at O(Aa). In other

words, cubic nonlinearities will force the fundamental to modify its growth rate even in
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the absence of the second harmonic and the mean flow distortion; and third, the vortex

stretching term (Batchelor, 1967, p. 267; the change of vorticity by vortex stretching is,

roughly speaking, a consequence of the conservation of angular momentum; vortex

stretching does not occur in two-dimensional flows), which represents amplification or

contraction of the vorticity vector by the strain rate is nonzero for azimuthal disturbances.

In order to see the physical essence of the nonlinear adjustments, consider the

ictx
nonlinear interactions in a flow that is perturbed by an O(A) fundamental wave e Due

to quadratic nonlinearities, the fundamental interacts with itself to generate an O(A 2)

2io.x
second harmonic e and with its complex conjugate to generate an O(A 2) zeroth

harmonic e0iax (this is the mode that distorts the mean profiles). At O(Aa), the second

harmonic interacts with the fundamental to generate the third harmonic e3lax and to

reproduce the fundamental, and the zeroth harmonic interacts with the fundamental to

reproduce the fundamental. Also, due to cubic nonlinearities, the fundamental interacts

with itself to reproduce itself at O(Aa). The first Landau constant, which measures the

fundamental's deviation from linear growth is, therefore, due to: (l)the interaction

between the fundamental and the second harmonic; (2)the mean flow distortion, and

(3) the interaction of the fundamental with itself via cubic nonlinearities.

6.1 Isothermal Incompressible Jets

The jet is unstable; once it is perturbed, the fundamental disturbance grows linearly

in time until it interacts with itself to create a wave Reynolds stress which excites both the

zeroth (thus inducing a distortion of the mean flow) and second harmonics. Once these

two harmonics are in the flow, they interact with the fundamental to modify its

exponential growth and such modification is measured by the sign and the magnitude of

the first Landau constant a x. In the isothermal imcompressible jet, cubic nonlinearities are
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absent and the nonlinear contribution to the growth rate arises from the mean flow

distortion and from the interaction between the fundamental and the second harmonic.

The generation of the zeroth harmonic causes the mean flow to change in the course of

time so that the instantaneous mean velocity profile is given by

u(r,t) = O(r) + A2(t) Uol(r) + O(A 4)

where U(r) is the base flow and uol(r) is the mode shape associated with the distortion of

the mean flow.

The Landau constant of the cold incompressible jet is found to be negative, which

means that the amplitude, A(t), of the instability wave will saturate into an equilibrium

amplitude. The saturation amplitude Ae (A_ = -ao/aa) is independent of the small initial

amplitude, but depends on the axial and azimuthal wavenumbers and on the Reynolds

number. Most of the contribution to the first Landau constant arises from the changes in

the mean flow, but while the minor contribution from the interaction between the first

two harmonics stabilizes axisymmetric disturbances, it destabilizes first azimuthal ones.

In Figure 32, the behavior of the first Landau constant as a function of Reynolds

number is shown at the neutral wavenumber. The flow is cold (T* = 1) and incompressible

(M = 0) and the disturbance is axisymmetric. The first Landau constant is negative (with

and without MFD) indicating that nonlinearities are stabilizing so that the exponential

growth of the fundamental disturbance will be reduced in time until a steady state is

established. The mean flow distortion is very stabilizing. At large Reynolds numbers, the

dominant contribution to a t comes from mean flow changes and not from the interaction

between the fundamental and the second harmonic. While the second harmonic contri-

bution is O(l), the mean flow distortion contribution is a strong function of Reynolds

number.
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Figure 32. First Landau constant as a function of Reynolds number for neutral waves
with and without mean flow distortion (MFD). # = O, M -- 0.0, T* - 1.0.
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In Figure 32, we saw values of the "total" first Landau constant. In order to show

the contribution of the interaction between the first and second harmonics, we display the

values of (-a t ) (Figure 33) due to this effect alone. The Landau constant is negative for

neutral as well as amplified waves so that this interaction alone can slow down the linear

growth, and bring the flow into a saturated state. At exactly the neutral wave, the Landau

constant is nearly the same for these two Reynolds numbers (see also Figure 32). The

Landau constant increases in magnitude as the most amplified wave is approached which

implies that the interaction between the first and second harmonics counteracts the increase

in the linear instability of the flow as the wavenumber is reduced from its neutral value to

that associated with the maximum (linear) growth rate.

Nonlinearities modify the frequency of the fundamental wave at O(A '_) and such

modification is measured by the sign and the magnitude of the imaginary part of the

Landau constant, which depends on the flow parameters and on the mode number. A

typical result is shown in Figure 34 when the Reynolds number is 500. As far as the real

part, a1, of the Landau constant is concerned, this latter figure is the counterpart of Figure

33 when the effect of the mean flow distortion is included. Note also the similarities

between the behaviors of the (real part) of the Landau constants for jets and mixing layers

(Figures 34 and 16). The imaginary part of the Landau constant is quite insensitive to

wavenumber except in the immediate vicinity of the neutral wavenumber.

In summary, the results of this section are: (1)nonlinearities modify both the

amplitude and frequency of a small disturbance in a jet, but the dominant contribution to

the first Landau constant comes from the distortion of the mean flow (and not from the

interaction between the fundamental and the second harmonic); (2)nonlinearities are

stabilizing so that the growth rate of the fundamental will be reduced in time until a
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steadystateis established; (3) in a relative sense, nonlinear effects are more important for

near-neutral waves than for off-neutral waves because the Landau constant is quite large

for near-neutral waves; and (4)our weakly nonlinear theory becomes increasingly

inaccurate as the Reynolds number tends to infinity.

6.2 Heating and Mach Number Effects

In this section, the dependence of the Landau constant on wavenumber for various

temperature ratios and Mach numbers is discussed in order to shed light on the weakly

nonlinear behavior of a disturbance in heated and compressible jets. The results show that

heating is very stabilizing (i.e., the Landau constant is negative and increases in magnitude

with increasing T*) and compressibility (increasing M) is slightly stabilizing for weakly

unstable waves. This holds for both axisymmetric and first azimuthal modes with and

without the mean flow distortion.

A heated or compressible jet is unstable; once it is perturbed, the fundamental

disturbance grows exponentially in time until it interacts with itself to generate a second

harmonic and a zeroth harmonic. Once these two harmonics are in the flow, they interact

with the fundamental to modify its exponential growth. The major difference between

this and the incompressible case is the presence of cubic terms (such as puu in the

momentum equation). Because of cubic nonlinearities, the fundamental will interact with

itself to modify its own growth. In simple terms, the cubic (i.e., the second) term on the

right-hand side of the Landau equation (dA/dt = aoA + alA3+ ...) is due to the inter-

actions between the O(A) fundamental and both the O(A 2) zeroth and the O(A'-) second

harmonics and to the interaction of the fundamental with itself via cubic nonlinearities.

When the flow is either hot or compressible, both the mean velocity and the mean

temperature profiles will be distorted (via the zeroth harmonic) due to the generation of
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waveReynoldsstresses. The mean flow distortion is always stabilizing became it tends to

reduce the velocity gradients near the center of the jet shear layer.

The behavior of the Landau constant at a low Mach number, as a function of

wavenumber for three values of the jet temperature ratio, is shown in Figure 35, when the

disturbance is axisymmetric and the mean flow distortion is not included. It can be seen

that a heated jet becomes increasingly stabilized as the neutral wavenumber (denoted by

the vertical dashed lines) is approached. Since for moderately amplified waves (say,

1.4 ___a _<an), the linear growth rate (ao) decreases with heating (see Figure 7) while

(-a 1) increases with heating (and since the equilibrium amplitude is A e = Jao/(-al)),

heating will severely reduce the overall growth of the disturbance. In other words, under

linear growth and nonlinear saturation, a heated jet is much more stable than a cold one.

Although our calculations are carried out for a parallel base flow using temporal

theory, they may be applied to a laboratory situation in the following way. First, time is

really an age variable which, in a typical experiment, becomes the downstream distance

(say, x). In essence, here we are making use of an idea of Gaster in which x (of a spatial

calculation) and t (of a temporal calculation) are related by x = Uct where U c is some

suitable convection speed. Now suppose a jet is perturbed by a periodic oscillation at

some frequency near the most amplified frequency. As this wave propagates downstream,

it becomes less and less unstable because of the divergence of the base flow. This

divergence is caused by viscous or turbulent stresses (due to the fine grain motion) acting

on the base flow. In terms of our temporal theory, the excitation occurs at some

wavenumber (say, a = 1.4, Figure 35) and as the wave develops in time, its wavenumber

increases (i.e., the wave approaches its neutral point). As this happens, and as the

amplitude of the wave increases to the point where (weak) nonlinear effects become



144

80

60

-a 1

40

20

0

T* = 1.5

I l [ l l
1.4 1.6 1.8 2.0 2.2

Wavenumber,

Figure 35. Landau constant as a function of wavenumber for parametric values of jet
temperature ratio, T*. Axisymmetric mode. Re = 1000. M = 0.1. No mean
flow distortion. Vertical dashed lines denote neutral points.
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important,a heatedjet becomesconsiderablyless unstable than a cold one. Therefore, the

saturation amplitude in a heated jet can be expected to be much smaller than in a cold jet,

and the various secondary instabilities (i.e., resonances and vortex pairing) are, therefore,

less important.

Figure 36 shows the behavior of a_ as a function of wavenumber for two temper-

ature ratios for the first azimuthal mode when the mean flow distortion is not included. It

is interesting to note that when the jet is cold (i.e., T* E 1), the first Landau constant is

positive for unstable wavenumbers, which means that the second harmonic alone is

destabilizing (i.e., will force the fundamental to increase its growth rate) but heating

changes the sign of a_ and is, therefore, once again stabilizing. It can also be seen that

heating becomes increasingly stabilizing as the neutral point is approached. For a fixed

wavenumber (say, a--1.8), the linear growth rate decreases (see Figure 7) while -a 1

increases with heating, which means that heating greatly suppresses the overall growth of

the disturbance.

The dependence of the Landau constant on Math number is shown in Figure 37 for

a-- 1.3, which is approximately the most unstable wave. The magnitude of the Landau

constant decreases slightly with increasing Mach number at this wavenumber. On the

other hand, for larger wavenumbers (i.e., for weakly amplified waves with l.g < a < a n,

say), increasing the Math number increases the magnitude of the Landau constant, but

only slightly. The linear growth rates of weakly amplified waves, however, decrease with

increasing Mach number, which means that, under linear amplification and nonlinear

saturation, the equilibrium amplitude of the fundamental is lower for a subsonic jet than

for an incompressible one; much of this reduction in amplitude comes from a reduction in

the linear growth rate ao.



146

60-

40 -

-a t

20 -

0 -

-2O

J

T* = 1.0

L I L I J
1.4 1.6 1.8 2.0

Wavenumber,

I

I

2.2

Figure 36. Landau constant as a, function of wavenumber for parametric values of jet
temperature ratio, T . First azimuthal mode. Re = 1000. M = 0.0. No
mean flow distortion. Vertical dashed lines denote neutral points.



147

8O

6O

-a1

13=0

B=I

o I 1 I ! I

0.0 0.2 0.4 0.6 0.8 1.0

Bach number, M

Figure 37. Landau constant as a function of Mach number for the axisymmetric and the
first azimuthal modes at an axial wavenumber of 1.3. Re -- 1000. T* = 1.0.

Mean flow distortion included.



148

Linearstabilitycalculations(see Chapter 4) indicate that, for given flow parameters

and axial wavenumber, the linear growth rate of the first azimuthal mode is larger than

that of the axisymmetric mode. On the other hand, the nonlinear calculations (see Figure

37, for example) show that the magnitude of the Landau constant is larger for the

axisymmetric mode. This means that the p = 1 mode is the dominant one in the sense that

it will result in higher saturation amplitudes and, therefore, produce a significant distortion

of the mean flow. Hence, the primary nonlinearity in a jet is expected to be in the first

azimuthal mode for our base velocity profile.

In order to isolate the effects of heating, compressibility and mode number on the

subsequent evolution of a disturbance, consider the typical behavior of a weakly amplified

mode which is "deposited" into the flow at time t = 0 with an initial amplitude of 1%. The

mode has an axial wavenumber of 1.6. The linear growth rate and the first Landau

constants are calculated, as described previously, and the Landau (amplitude) equation is

integrated to find the amplitude A = A(t). Its behavior is shown in Figure 38 for various

combinations of azimuthal mode numbers, Mach numbers and temperature ratios. In all

cases, the disturbance amplitude levels off and tends to the equilibrium amplitude, Ae,

whose values are shown on the right-hand side.

There are two important points to note: first, at large values of time, our base flow

will be dominated by the first azimuthal mode (the dashed lines are generally above the

solid ones), and second, heating reduces the equilibrium amplitude quite significantly.

In the weakly nonlinear theory, the distortion of the mean flow is proportional to

A S (the instantaneous mean velocity is u(r,t)= U(r)+ A2(t)Uot(r ) + .... the instantaneous

mean density is p(r,t) = R(r) + A2(t) pol(r) + ..., where R(r) is the base density and pol(r) is

the mode shape associated with the distortion of the mean density). Because of this, in
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view of Figure 38, the induced velocity and density distortions will be smaller for heated

(or subsonic) jets than for cold (or incompressible) ones. Therefore, excitation at a given

amplitude will have less effect on a heated (or subsonic) jet than on a cold (or

incompressible) one.

While linear theory is concerned with very small-amplitude disturbances, weakly

nonlinear theory is concerned with the way cumulative (small) nonlinear effects modify the

instability of the flow. The jet is unstable so that, with increasing time, higher harmonics

develop, the mean flow continues to change, and the fundamental disturbance keeps

adjusting its shape, growth rate and frequency until a steady state is established. The

precise way in which this happens depends (for given Re, a) on the jet Mach number,

temperature ratio, and mode number (see Figure 38).

In short, the results of this section are: (1) heating and compressibility suppress the

nonlinear growth rate of weak instability modes. This is summarized in Figure 39, where

the saturation amplitude is plotted as a function of jet Mach number and temperature

ratio; (2) excitation of a given amplitude will have less effect on heated (or subsonic) jets

because of the small mean flow changes (which are proportional to A2); and (3) under

linear growth and nonlinear saturation, the first azimuthal mode is the dominant one for

the representative base flow for which we have carried out our calculations.

6.3 Vorticity Roll-Up

Flows characterized by inflectional profiles are generally unstable so that small

perturbations grow to large fluctuations in relatively short times (in this work, the flow is

assumed to be spatially periodic and evolving in time). The basic vorticity distribution,

which possesses a minimum, is (inviscidly) unstable to small perturbations via the Kelvin-

Helmholtz instability mechanism (Batchelor, 1967). Thus, instability waves grow
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exponentially with time (initially) and the redistribution of vorticity causes the jet shear

layer to roll-up and form distinct vortices (Ahuja et al., 1982). Most of the vorticity is

concentrated in a thin annulus near the middle of the jet shear layer and, of course, the

large scale vortices convect with the flow at a speed which depends on the wavenumber,

Reynolds number, jet Mach number and temperature.

Initially, the flow is made up of the base flow and a small disturbance but, as time

increases, the amplitude of the fundamental keeps increasing exponentially until nonlinear

interactions generate higher harmonics and distort the base flow. The flow will then be

made up of all the harmonics of the fundamental and a distorted (time-dependent) mean

flow. Therefore, the vorticity will constantly change until a final steady-state is reached.

In this work, the solution contains only an O(A) fundamental wave, an O(AZ) second

harmonic and an O(A 2) mean flow distortion. In the round jet, nonlinearities also modify

the frequency of the disturbance.

Consider the axisymmetric disturbance (8 = 0); then, the perturbation axial velocity

u(x,r,t), the perturbation radial velocity

vorticity [-U'(r) + _/0x - Ou/0r] are

f
ei(_x-_/)

u(x,r,t) = [A(t) uao(r)

+ A"(t) uo1(r)

(
ei(ax-'_)

v(x,r,t) = [A(t) Vao(r)

+ A2(t) vol(r)

v(x,r,t) and the total azimuthal component of

+ A_t) U2o(r) e2i(ax-'_) + c.c.}

+ A2(t) v2o(r ) e2i(ax-7) + c.c.}

(6.4-1)

(
ei(cxx-'_) x,r,t) = -U" + tA(iavlo - U]o)

- A2 ug1

(6.4-2)

+ A2(2iaV_o - U_o) e2i(ax-'y) + C.C. 1

(6.4-3)
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wherethe shape of the linear mode is given by (u_o, Vlo), the shape of the second har-

monic is given by (u2o, vzo) and the shape of the mean flow distortion is given by (uol,

%1)"

The time (and amplitude) dependent phase, % is obtained from

d7 = oj° + A2(t ) o:1 + O(Ai )dt

where wa = -Im(A_) is minus the imaginary part of the first complex Landau constant, A1.

For a given wave and Reynolds number (a = 1.6, /9 = 0, Re = 5000), the mode shapes and

Landau constant are obtained numerically and the amplitude and phase equations are

integrated with the initial conditions A(0) = 0.01, 7(0) = 0. This enables us to obtain the

instantaneous (total) vorticity, as given by (6.4-3). In Figures 41, 42 and 43, we show

contours of constant vorticity. But first, we look at Figure 40, which displays the behavior

of the amplitude, A = A(t), and the values of time (denoted by the dots) at which the

vorticity controus are actually shown. We plot these contours for three combinations of

Mach number and temperature ratio.

In each of these figures, (41, 42 and 43), we see an oscillatory contour well outside

a central region, say r --. 0.9. Within this central region (r = 0.9), the vorticity shows a

tendency to roll-up at the larger values of time. For example, in Figure 41 (bottom), this

roll-up may be identified by examining the third contour from the bottom which exhibits

"wave breaking" or an "S" shape at a certain axial location. It is clear that at this relatively

large Reynolds number (= 5000), our weakly nonlinear theory does not adequately

represent the vorticity, although it does indicate the tendency towards roll-up and a

nonlinear stage. Clearly, most of the difficulty arises in a central region (say, r = 0.9).

This is where the critical layer is, and it needs to be treated as a separate entity with its
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own length scale which depends on the amplitude. At high Reynolds numbers, this leads

to a complementary theory which involves a nonlinear and nonequilibrium critical layer

(Goldstein and Leib, 1988).
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SUMMARY AND DISCUSSION

In the previous chapters, some aspects of linear and nonlinear instability in mixing

layers and heated jets were discussed. A receptivity analysis was carried out in order to

see how the flow response varies with the location of an imposed excitation. The

equations of motion of a jet flow that is excited by a compact pulse were solved to yield a

wave packet of slowly changing amplitude which emerges downstream as a result of the

instability. The long time solution of the initial value problem provides information not

only on the structure of the packet (which consists of a few oscillations and is convected

downstream by the mean flow), but also on the relationship between the magnitude of the

disturbances in the jet and the location of the (localized and impulsive) input disturbance.

This magnitude depends in a nontrivial manner on the location of the excitation and there

is an optimum position for which little energy input will produce large perturbations.

It was found that maximum response is generated when the source is placed at a point

where the fluid velocity equals the phase velocity of the most amplified wave of the

packet.

In Chapter 5, the nonlinear evolution of disturbances in mixing layers was analyzed

using both the weakly nonlinear stability theory and a numerical solution of the Navier-

Stokes equations. This solution retained the first few Fourier modes for reasons that were

given in the main body of that chapter. Once an unstable base flow is perturbed by a

wave-like disturbance, the disturbance grows initially according to linear stability theory

until nonlinear interactions generate higher harmonics and wave Reynolds stresses which

will distort the mean flow and alter its stability characteristics. The solution, thereafter,
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may become steady or oscillatory depending on the wavenumber, the initial amplitude of

the disturbance and the Reynolds number.

The weakly nonlinear theory is an asymptotic theory valid for small amplitudes in

which the effects of nonlinearities enter in a hierarchical manner. The lowest order

solution is the linear one to which corrections are made in a successive fashion. Our

numerical solution, on the other hand, involves a truncation of Fourier modes but places

no explicit restriction on the amplitude of the disturbance. The two solutions were

compared for various wave and Reynolds numbers in order to establish the range of

validity of the weakly nonlinear theory.

In nonlinear hydrodynamic stability theory, a perturbed mixing layer is represented

as a superposition of interacting instability waves that propagate and amplify in time.

Beyond the region of linear growth, instability waves evolve into more or less discrete

vortices composed of several Fourier modes. The established vortex structure may be

steady or may oscillate in time, depending on the amplitude of the perturbations and on

the Reynolds number.

The analysis in Chapter 5 was concerned with the temporal interactions between

instability modes in mixing layers and the main conclusions are:

1. Nonlinearities stabilize the growth of the fundamental instability wave, but the

dominant effect arises from mean flow changes and not from higher harmonics.

. At small initial amplitudes, the flow will evolve into a steady (saturated) state, while

at large initial amplitudes, the flow will evolve into an oscillatory state characterized

by an alternating energy exchange between the mean flow and the perturbation

(fundamentals and harmonics).
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° At small amplitudes and at moderate Reynolds numbers, the weakly nonlinear theory

describes well the saturation of the fundamental, the distortion of the mean flow and

the initial stages of vorticity roll-up. The agreement between the numerical results

and the weakly nonlinear theory is very good.

. The two-dimensional numerical simulations describe well the (intrinsically nonlinear)

roll-up of the shear layer. Beyond the region of linear growth, instability waves

evolve into a periodic array of compact vortices. The oscillatory final state was

observed by other workers as well.

The weakly nonlinear theory was extended to heated and compressible round jets

where both quadratic and cubic nonlinearities exist. The quadratic and cubic wave

Reynolds stresses generated by self-interactions will distort the mean velocity and

temperature profiles and, therefore, alter the jet instability characteristics. The nonlinear

evolution of the flow will depend not only on the axial wavenumber, the azimuthal

wavenumber and the Reynolds number, but also on the jet Mach number and temperature.

The analysis in Chapter 6 was concerned with the temporal interactions between

instability modes in heated subsonic round jets and the main conclusions are:

l° According to weakly nonlinear theory, heating and compressibility suppress the growth

of instability waves so that an external excitation of a given amplitude will have less

effect when the jet is hot or compressible.

2. Under exponential growth and nonlinear saturation, the first azimuthal mode of

excitation is the dominant one for the base profiles considered in this study.
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The weakly nonlinear theory describes qualitatively the initial stages of the roll-up of

vorticity.

The weakly nonlinear theory has always been applied to neutral instability modes

which are superimposed on isothermal mixing layers. Using the formalism of Herbert

(1983), we have applied this theory to unstable waves.

A most remarkable finding is that at high Reynolds numbers, the Landau constants

vary extremely rapidly in the vicinity of the neutral wavenumber. This rapid variation,

for the most part, comes from the distortion of the mean flow and definitely implies that a

weakly nonlinear theory at Re = oo must contain a fully nonlinear critical layer which

evolves in space and time. Outside this critical layer, nonlinearities may be described in a

hierarchical manner in which the lowest order term is provided by linear theory. The

onset of the full nonlinearity in the critical layer is quite sudden (because the Landau

constants vary rapidly near the neutral wavenumber); this explains why linear stability

theory is so successful in predicting the position of the roll-up (in time or space).
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MEAN JET PROFILES

The mean velocity, density and pressure profiles of the heated subsonic jet are:

U = (U(r), 0, 0), U(r) = 0.5 [ tan"IIr 1' '11
R = R(r)=

T*

1 + (T*-I) U + _ M 2 T* U(I-U)

P = constant

where

.2 J

and

T* --

oo

"momentum thickness" = IO U(I - U) dr,

temperature ratio = Tc

M = jet Mach number--- U c/a c

Too = ambient temperature

ac = speed of sound on jet centerline.
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NONLINEAR INTERACTIONS IN THE JET

The nonlinear forcing terms for the first harmonic, the mean flow distortion and

the distortion of the fundamental are given below. First, let

F(r) = U- %.

• 1 i__
Vlo(r) = iaUlo+Vao+ r vl° + r wl°"

' l
V2o(r ) = 2io_U2o+V2o+ r v_° + r w2°"

• 1 iB
Vol(r) ,= i_Uoa+%l + r %1 + r w°l"

• 1 i#
V_lo(r ) = io_U_lo+V_lo+ r v-l° + r w-l°"

Then

Fi(')
o

• • 1
-2Plo Vlo - Vxo Plo + Pao Vlo + r Plo Vlo •

R" U_o Vao + R Uao V_o - U' P_o V_o - R V_o

= Vao + - R + - Rw_o.
l" r

R" Vxo Wxo + R Vxo Wxo - R V_o Wao.

• " 1
= -(_+ l) PaoVxo- PaoVao + PloVlo + r PloVlo"

• • • • l
= P-lo Vlo + P-lo Vxo + Plo V-lo + Pao V-lo + r (P-lo Vlo + Pxo V-xo) •



"i

__(2)
" 01

4"

4"

2ao  _1oulo+ 1oo_1o,+ +  u_loVlO.ulov_lo,
R (u_lo Vlo + Ulo V-lo + V-lo Ulo + Vlo U-lo)

U" (P-lo Vlo + &o V-lo) •

ffi ao(P_xoVxo+PxoV_lo)+ IR+ RlvxoV-lo

iv w ow o)+ R -1o Vlo + vlo V-lo - r "

" 2ao (P-10 Wl0 + Pl0 W-10)+ I R'+ _1 (v-10 Wl0 + V10 W-IO)

+ R (V_lo W_o + vlo w_lo + W_lo Vlo + w_o V-_o) •
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__(5) =
" 01

+

+

_; P-lo Vlo + _ lo V-lo + + - Plo u-l° l"

P-lo Vlo + Plo v-lo - ia ulo P-lo - i/_ P-lo1" Wl0

Pzo Voz + Poz Vxo + P,o V-lo + P-zo V2o - i_ P-zo U2o - iBrP-lo W2o

Plo vol + POl vlo + P-lo V2o + P_-o V-_o "

ffi -(2a o + ia F) 09-10 US0 4" P20 U-10 4" P01 ill0 4" Pl0 U01)

- U' (P-lo V,o + P_o V-lo + Pol Vlo + Plo Vol)

- R' (U_lo V2o + U2o V-lo + Uol Vlo + Ulo Vol)

- Vlo (P-lo Ulo + R Uol + Plo U-lo) - R [ulo Vol + U2o (V-lo - i_ U_lo)

e

+ U-loV_ °- iP + ' + " + " +v_ ou__o]r U-10 w_t0 Vl0 u01 V01 1110 V-10 u20

- Pl0 UlO V-10 - Pl0 (V-10 Ul0 4- Vl0 U_10 )

- V_o (U-_o P_o + P-_o U_o + U_o P-_o) - U_o V-_o P_o •



F0)
11 = -(2a o + ia F) (P-lo vzo + P,-oV-lo + Pol Vlo + Plo Vol)

- 2R" (V_zo v2o + vlo Vol) - Vlo (P-lo Vlo + R Voz + Plo V-lo)

[, • v- o1- R [Vlo Vol + v, o -lo + v-lo + _--

+ i(_ v_lo g2o + Vlo Vol + Vol Vlo + 2 V_lo V2o + j_
r V_lo W2o

2r (w°l Wxo + W2o W-lo)] - Plo Vzo V-lo - Plo (V-lo Vxo + Vzo v-lo)

• • • Wlo

- vlo (2V-lo Pxo + Vlo P-lo + P-lo Vlo) + --7- (2Plo W-lo + P-xo Wlo) "
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f
F(4)

11 = -(2a o + ia F) (P-lo W,.o + P=o W-lo + Plo Wol + Pol Wxo)

- R" (V_lo W2o+ V2o W__o + V_o Wox+ Vo_ W_o)

- Vlo (P-lo Wlo + R wol + Plo W-lo) - R [Wlo VOl + W2o [V_lO

+ W__o V2o-iC=U_o- W2o +VloWo_+Vol Wxo+V_loW_. o

• l
+ v=° w-l° + r (vl° w°l + v°l wl° + v=° w-l°)] - Plo Wlo V-lO

e • • t •

- Pxo (V-lo Wlo + vlo W-lo) - Vlo (P-lo Wlo + W-lo Pxo + Wlo P-lo)

l
wl° (P-lo Vlo + Plo V-lo) - r PxoVlo W-lo - Plo V-lo Wxo •

r

• l 1 " 1= -i¢ Poz Vzo + P-zo V:o + Pzo vol + r Pzo Voz + r Pzo V-lo + P,-oV-_o

+ (_-2)[ i_u-'°p'°+ i_r PzoW-,o)- i/_(w°_P_°-wz°P-l°)r

- i_(Uo_Pzo U_oP-zo) - PzoVoz- PoxVzo P-zoV_o zoV-zo"
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